Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
This paper presents the Deep learning-based Perceptual Audio Quality metric (DeePAQ) for evaluating general audio quality. Our approach leverages metric learning together with the music foundation model MERT, guided by surrogate labels, to construct an embedding space that captures distortion intensity in general audio. To the best of our knowledge, DeePAQ is the first in the general audio quality domain to leverage weakly supervised labels and metric learning for fine-tuning a music foundation model with Low-Rank Adaptation (LoRA), a direction not yet explored by other state-of-the-art methods. We benchmark the proposed model against state-of-the-art objective audio quality metrics across listening tests spanning audio coding and source separation. Results show that our method surpasses existing metrics in detecting coding artifacts and generalizes well to unseen distortions such as source separation, highlighting its robustness and versatility.
Event cameras offer advantages in object detection tasks due to high-speed response, low latency, and robustness to motion blur. However, event cameras lack texture and color information, making open-vocabulary detection particularly challenging. Current event-based detection methods are typically trained on predefined categories, limiting their ability to generalize to novel objects, where encountering previously unseen objects is common. Vision-language models (VLMs) have enabled open-vocabulary object detection in RGB images. However, the modality gap between images and event streams makes it ineffective to directly transfer CLIP to event data, as CLIP was not designed for event streams. To bridge this gap, we propose an event-image knowledge distillation framework that leverages CLIP's semantic understanding to achieve open-vocabulary object detection on event data. Instead of training CLIP directly on event streams, we use image frames as inputs to a teacher model, guiding the event-based student model to learn CLIP's rich visual representations. Through spatial attention-based distillation, the student network learns meaningful visual features directly from raw event inputs while inheriting CLIP's broad visual knowledge. Furthermore, to prevent information loss due to event data segmentation, we design a hybrid spiking neural network (SNN) and convolutional neural network (CNN) framework. Unlike fixed-group event segmentation methods, which often discard crucial temporal information, our SNN adaptively determines the optimal event segmentation moments, ensuring that key temporal features are extracted. The extracted event features are then processed by CNNs for object detection.
Since the defect detection of conventional industry components is time-consuming and labor-intensive, it leads to a significant burden on quality inspection personnel and makes it difficult to manage product quality. In this paper, we propose an automated defect detection system for the dual in-line package (DIP) that is widely used in industry, using digital camera optics and a deep learning (DL)-based model. The two most common defect categories of DIP are examined: (1) surface defects, and (2) pin-leg defects. However, the lack of defective component images leads to a challenge for detection tasks. To solve this problem, the ConSinGAN is used to generate a suitable-sized dataset for training and testing. Four varieties of the YOLO model are investigated (v3, v4, v7, and v9), both in isolation and with the ConSinGAN augmentation. The proposed YOLOv7 with ConSinGAN is superior to the other YOLO versions in accuracy of 95.50\%, detection time of 285 ms, and is far superior to threshold-based approaches. In addition, the supervisory control and data acquisition (SCADA) system is developed, and the associated sensor architecture is described. The proposed automated defect detection can be easily established with numerous types of defects or insufficient defect data.
Large Language Models (LLMs) interact with millions of people worldwide in applications such as customer support, education and healthcare. However, their ability to produce deceptive outputs, whether intentionally or inadvertently, poses significant safety concerns. The unpredictable nature of LLM behavior, combined with insufficient safeguards against hallucination, misinformation, and user manipulation, makes their misuse a serious, real-world risk. In this paper, we investigate the extent to which LLMs engage in deception within dialogue, and propose the belief misalignment metric to quantify deception. We evaluate deception across four distinct dialogue scenarios, using five established deception detection metrics and our proposed metric. Our findings reveal this novel deception measure correlates more closely with human judgments than any existing metrics we test. Additionally, our benchmarking of eight state-of-the-art models indicates that LLMs naturally exhibit deceptive behavior in approximately 26% of dialogue turns, even when prompted with seemingly benign objectives. When prompted to deceive, LLMs are capable of increasing deceptiveness by as much as 31% relative to baselines. Unexpectedly, models trained with RLHF, the predominant approach for ensuring the safety of widely-deployed LLMs, still exhibit deception at a rate of 43% on average. Given that deception in dialogue is a behavior that develops over an interaction history, its effective evaluation and mitigation necessitates moving beyond single-utterance analyses. We introduce a multi-turn reinforcement learning methodology to fine-tune LLMs to reduce deceptive behaviors, leading to a 77.6% reduction compared to other instruction-tuned models.
Can a model distinguish between the sound of a spoon hitting a hardwood floor versus a carpeted one? Everyday object interactions produce sounds unique to the objects involved. We introduce the sounding object detection task to evaluate a model's ability to link these sounds to the objects directly involved. Inspired by human perception, our multimodal object-aware framework learns from in-the-wild egocentric videos. To encourage an object-centric approach, we first develop an automatic pipeline to compute segmentation masks of the objects involved to guide the model's focus during training towards the most informative regions of the interaction. A slot attention visual encoder is used to further enforce an object prior. We demonstrate state of the art performance on our new task along with existing multimodal action understanding tasks.
In autonomous systems, precise object detection and uncertainty estimation are critical for self-aware and safe operation. This work addresses confidence calibration for the classification task of 3D object detectors. We argue that it is necessary to regard the calibration of the full predictive confidence distribution over all classes and deduce a metric which captures the calibration of dominant and secondary class predictions. We propose two auxiliary regularizing loss terms which introduce either calibration of the dominant prediction or the full prediction vector as a training goal. We evaluate a range of post-hoc and train-time methods for CenterPoint, PillarNet and DSVT-Pillar and find that combining our loss term, which regularizes for calibration of the full class prediction, and isotonic regression lead to the best calibration of CenterPoint and PillarNet with respect to both dominant and secondary class predictions. We further find that DSVT-Pillar can not be jointly calibrated for dominant and secondary predictions using the same method.
The online construction of vectorized high-definition (HD) maps is a cornerstone of modern autonomous driving systems. State-of-the-art approaches, particularly those based on the DETR framework, formulate this as an instance detection problem. However, their reliance on independent, learnable object queries results in a predominantly local query perspective, neglecting the inherent global representation within HD maps. In this work, we propose \textbf{MapGR} (\textbf{G}lobal \textbf{R}epresentation learning for HD \textbf{Map} construction), an architecture designed to learn and utilize a global representations from queries. Our method introduces two synergistic modules: a Global Representation Learning (GRL) module, which encourages the distribution of all queries to better align with the global map through a carefully designed holistic segmentation task, and a Global Representation Guidance (GRG) module, which endows each individual query with explicit, global-level contextual information to facilitate its optimization. Evaluations on the nuScenes and Argoverse2 datasets validate the efficacy of our approach, demonstrating substantial improvements in mean Average Precision (mAP) compared to leading baselines.
The real-time detection of small objects in complex scenes, such as the unmanned aerial vehicle (UAV) photography captured by drones, has dual challenges of detecting small targets (<32 pixels) and maintaining real-time efficiency on resource-constrained platforms. While YOLO-series detectors have achieved remarkable success in real-time large object detection, they suffer from significantly higher false negative rates for drone-based detection where small objects dominate, compared to large object scenarios. This paper proposes HierLight-YOLO, a hierarchical feature fusion and lightweight model that enhances the real-time detection of small objects, based on the YOLOv8 architecture. We propose the Hierarchical Extended Path Aggregation Network (HEPAN), a multi-scale feature fusion method through hierarchical cross-level connections, enhancing the small object detection accuracy. HierLight-YOLO includes two innovative lightweight modules: Inverted Residual Depthwise Convolution Block (IRDCB) and Lightweight Downsample (LDown) module, which significantly reduce the model's parameters and computational complexity without sacrificing detection capabilities. Small object detection head is designed to further enhance spatial resolution and feature fusion to tackle the tiny object (4 pixels) detection. Comparison experiments and ablation studies on the VisDrone2019 benchmark demonstrate state-of-the-art performance of HierLight-YOLO.
The study of X-ray spectra is crucial to understanding the physical nature of astrophysical sources. Machine learning methods can extract compact and informative representations of data from large datasets. The Chandra Source Catalog (CSC) provides a rich archive of X-ray spectral data, which remains largely underexplored in this context. This work aims to develop a compact and physically meaningful representation of Chandra X-ray spectra using deep learning. To verify that the learned representation captures relevant information, we evaluate it through classification, regression, and interpretability analyses. We use a transformer-based autoencoder to compress X-ray spectra. The input spectra, drawn from the CSC, include only high-significance detections. Astrophysical source types and physical summary statistics are compiled from external catalogs. We evaluate the learned representation in terms of spectral reconstruction accuracy, clustering performance on 8 known astrophysical source classes, and correlation with physical quantities such as hardness ratios and hydrogen column density ($N_H$). The autoencoder accurately reconstructs spectra with 8 latent variables. Clustering in the latent space yields a balanced classification accuracy of $\sim$40% across the 8 source classes, increasing to $\sim$69% when restricted to AGNs and stellar-mass compact objects exclusively. Moreover, latent features correlate with non-linear combinations of spectral fluxes, suggesting that the compressed representation encodes physically relevant information. The proposed autoencoder-based pipeline is a powerful tool for the representation and interpretation of X-ray spectra, providing a compact latent space that supports both classification and the estimation of physical properties. This work demonstrates the potential of deep learning for spectral studies and uncovering new patterns in X-ray data.
A comprehensive understanding of animal behavior ecology depends on scalable approaches to quantify and interpret complex, multidimensional behavioral patterns. Traditional field observations are often limited in scope, time-consuming, and labor-intensive, hindering the assessment of behavioral responses across landscapes. To address this, we present kabr-tools (Kenyan Animal Behavior Recognition Tools), an open-source package for automated multi-species behavioral monitoring. This framework integrates drone-based video with machine learning systems to extract behavioral, social, and spatial metrics from wildlife footage. Our pipeline leverages object detection, tracking, and behavioral classification systems to generate key metrics, including time budgets, behavioral transitions, social interactions, habitat associations, and group composition dynamics. Compared to ground-based methods, drone-based observations significantly improved behavioral granularity, reducing visibility loss by 15% and capturing more transitions with higher accuracy and continuity. We validate kabr-tools through three case studies, analyzing 969 behavioral sequences, surpassing the capacity of traditional methods for data capture and annotation. We found that, like Plains zebras, vigilance in Grevy's zebras decreases with herd size, but, unlike Plains zebras, habitat has a negligible impact. Plains and Grevy's zebras exhibit strong behavioral inertia, with rare transitions to alert behaviors and observed spatial segregation between Grevy's zebras, Plains zebras, and giraffes in mixed-species herds. By enabling automated behavioral monitoring at scale, kabr-tools offers a powerful tool for ecosystem-wide studies, advancing conservation, biodiversity research, and ecological monitoring.