Abstract:Ethological research increasingly benefits from the growing affordability and accessibility of drones, which enable the capture of high-resolution footage of animal movement at fine spatial and temporal scales. However, analyzing such footage presents the technical challenge of separating animal movement from drone motion. While non-trivial, computer vision techniques such as image registration and Structure-from-Motion (SfM) offer practical solutions. For conservationists, open-source tools that are user-friendly, require minimal setup, and deliver timely results are especially valuable for efficient data interpretation. This study evaluates three approaches: a bioimaging-based registration technique, an SfM pipeline, and a hybrid interpolation method. We apply these to a recorded escape event involving 44 plains zebras, captured in a single drone video. Using the best-performing method, we extract individual trajectories and identify key behavioral patterns: increased alignment (polarization) during escape, a brief widening of spacing just before stopping, and tighter coordination near the group's center. These insights highlight the method's effectiveness and its potential to scale to larger datasets, contributing to broader investigations of collective animal behavior.
Abstract:Recent advancements in deep learning and aerial imaging have transformed wildlife monitoring, enabling researchers to survey wildlife populations at unprecedented scales. Unmanned Aerial Vehicles (UAVs) provide a cost-effective means of capturing high-resolution imagery, particularly for monitoring densely populated seabird colonies. In this study, we assess the performance of a general-purpose avian detection model, BirdDetector, in estimating the breeding population of Salvin's albatross (Thalassarche salvini) on the Bounty Islands, New Zealand. Using drone-derived imagery, we evaluate the model's effectiveness in both zero-shot and fine-tuned settings, incorporating enhanced inference techniques and stronger augmentation methods. Our findings indicate that while applying the model in a zero-shot setting offers a strong baseline, fine-tuning with annotations from the target domain and stronger image augmentation leads to marked improvements in detection accuracy. These results highlight the potential of leveraging pre-trained deep-learning models for species-specific monitoring in remote and challenging environments.
Abstract:Scientific discoveries are often made by finding a pattern or object that was not predicted by the known rules of science. Oftentimes, these anomalous events or objects that do not conform to the norms are an indication that the rules of science governing the data are incomplete, and something new needs to be present to explain these unexpected outliers. The challenge of finding anomalies can be confounding since it requires codifying a complete knowledge of the known scientific behaviors and then projecting these known behaviors on the data to look for deviations. When utilizing machine learning, this presents a particular challenge since we require that the model not only understands scientific data perfectly but also recognizes when the data is inconsistent and out of the scope of its trained behavior. In this paper, we present three datasets aimed at developing machine learning-based anomaly detection for disparate scientific domains covering astrophysics, genomics, and polar science. We present the different datasets along with a scheme to make machine learning challenges around the three datasets findable, accessible, interoperable, and reusable (FAIR). Furthermore, we present an approach that generalizes to future machine learning challenges, enabling the possibility of large, more compute-intensive challenges that can ultimately lead to scientific discovery.
Abstract:Using drones to track multiple individuals simultaneously in their natural environment is a powerful approach for better understanding group primate behavior. Previous studies have demonstrated that it is possible to automate the classification of primate behavior from video data, but these studies have been carried out in captivity or from ground-based cameras. To understand group behavior and the self-organization of a collective, the whole troop needs to be seen at a scale where behavior can be seen in relation to the natural environment in which ecological decisions are made. This study presents a novel dataset from drone videos for baboon detection, tracking, and behavior recognition. The baboon detection dataset was created by manually annotating all baboons in drone videos with bounding boxes. A tiling method was subsequently applied to create a pyramid of images at various scales from the original 5.3K resolution images, resulting in approximately 30K images used for baboon detection. The tracking dataset is derived from the detection dataset, where all bounding boxes are assigned the same ID throughout the video. This process resulted in half an hour of very dense tracking data. The behavior recognition dataset was generated by converting tracks into mini-scenes, a video subregion centered on each animal; each mini-scene was manually annotated with 12 distinct behavior types, resulting in over 20 hours of data. Benchmark results show mean average precision (mAP) of 92.62\% for the YOLOv8-X detection model, multiple object tracking precision (MOTA) of 63.81\% for the BotSort tracking algorithm, and micro top-1 accuracy of 63.97\% for the X3D behavior recognition model. Using deep learning to classify wildlife behavior from drone footage facilitates non-invasive insight into the collective behavior of an entire group.