What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
Aug 20, 2025
Abstract:Reconstructing 3D human bodies from sparse views has been an appealing topic, which is crucial to broader the related applications. In this paper, we propose a quite challenging but valuable task to reconstruct the human body from only two images, i.e., the front and back view, which can largely lower the barrier for users to create their own 3D digital humans. The main challenges lie in the difficulty of building 3D consistency and recovering missing information from the highly sparse input. We redesign a geometry reconstruction model based on foundation reconstruction models to predict consistent point clouds even input images have scarce overlaps with extensive human data training. Furthermore, an enhancement algorithm is applied to supplement the missing color information, and then the complete human point clouds with colors can be obtained, which are directly transformed into 3D Gaussians for better rendering quality. Experiments show that our method can reconstruct the entire human in 190 ms on a single NVIDIA RTX 4090, with two images at a resolution of 1024x1024, demonstrating state-of-the-art performance on the THuman2.0 and cross-domain datasets. Additionally, our method can complete human reconstruction even with images captured by low-cost mobile devices, reducing the requirements for data collection. Demos and code are available at https://hustvl.github.io/Snap-Snap/.
Via

Aug 01, 2025
Abstract:The amount of text generated daily on social media is gigantic and analyzing this text is useful for many purposes. To understand what lies beneath a huge amount of text, we need dependable and effective computing techniques from self-powered topic models. Nevertheless, there are currently relatively few thorough quantitative comparisons between these models. In this study, we compare these models and propose an assessment metric that documents how the topics change in time.
Via

Aug 01, 2025
Abstract:Topic modeling is a Natural Language Processing (NLP) technique that is used to identify latent themes and extract topics from text corpora by grouping similar documents based on their most significant keywords. Although widely researched in English, topic modeling remains understudied in Bengali due to its morphological complexity, lack of adequate resources and initiatives. In this contribution, a novel Graph Convolutional Network (GCN) based model called GHTM (Graph-Based Hybrid Topic Model) is proposed. This model represents input vectors of documents as nodes in the graph, which GCN uses to produce semantically rich embeddings. The embeddings are then decomposed using Non-negative Matrix Factorization (NMF) to get the topical representations of the underlying themes of the text corpus. This study compares the proposed model against a wide range of Bengali topic modeling techniques, from traditional methods such as LDA, LSA, and NMF to contemporary frameworks such as BERTopic and Top2Vec on three Bengali datasets. The experimental results demonstrate the effectiveness of the proposed model by outperforming other models in topic coherence and diversity. In addition, we introduce a novel Bengali dataset called "NCTBText" sourced from Bengali textbook materials to enrich and diversify the predominantly newspaper-centric Bengali corpora.
Via

Aug 17, 2025
Abstract:Quality analysis of weather forecasts is an essential topic in meteorology. Although traditional score-based evaluation metrics can quantify certain forecast errors, they are still far from meteorological experts in terms of descriptive capability, interpretability, and understanding of dynamic evolution. With the rapid development of Multi-modal Large Language Models (MLLMs), these models become potential tools to overcome the above challenges. In this work, we introduce an MLLM-based weather forecast analysis method, RadarQA, integrating key physical attributes with detailed assessment reports. We introduce a novel and comprehensive task paradigm for multi-modal quality analysis, encompassing both single frame and sequence, under both rating and assessment scenarios. To support training and benchmarking, we design a hybrid annotation pipeline that combines human expert labeling with automated heuristics. With such an annotation method, we construct RQA-70K, a large-scale dataset with varying difficulty levels for radar forecast quality evaluation. We further design a multi-stage training strategy that iteratively improves model performance at each stage. Extensive experiments show that RadarQA outperforms existing general MLLMs across all evaluation settings, highlighting its potential for advancing quality analysis in weather prediction.
Via

Aug 06, 2025
Abstract:In this study, we examine the Federal Reserve's communication strategies during the COVID-19 pandemic, comparing them with communication during previous periods of economic stress. Using specialized dictionaries tailored to COVID-19, unconventional monetary policy (UMP), and financial stability, combined with sentiment analysis and topic modeling techniques, we identify a distinct focus in Fed communication during the pandemic on financial stability, market volatility, social welfare, and UMP, characterized by notable contextual uncertainty. Through comparative analysis, we juxtapose the Fed's communication during the COVID-19 crisis with its responses during the dot-com and global financial crises, examining content, sentiment, and timing dimensions. Our findings reveal that Fed communication and policy actions were more reactive to the COVID-19 crisis than to previous crises. Additionally, declining sentiment related to financial stability in interest rate announcements and minutes anticipated subsequent accommodative monetary policy decisions. We further document that communicating about UMP has become the "new normal" for the Fed's Federal Open Market Committee meeting minutes and Chairman's speeches since the Global Financial Crisis, reflecting an institutional adaptation in communication strategy following periods of economic distress. These findings contribute to our understanding of how central bank communication evolves during crises and how communication strategies adapt to exceptional economic circumstances.
* Manchester School, 93(5), 2025, 464-484
Via

Aug 14, 2025
Abstract:The active research topic of prompt engineering makes it evident that LLMs are sensitive to small changes in prompt wording. A portion of this can be ascribed to the inductive bias that is present in the LLM. By using an LLM's output as a portion of its prompt, we can more easily create satisfactory wording for prompts. This has the effect of creating a prompt that matches the inductive bias in model. Empirically, we show that using this Inductive Bias Extraction and Matching strategy improves LLM Likert ratings used for classification by up to 19% and LLM Likert ratings used for ranking by up to 27%.
Via

Aug 12, 2025
Abstract:Multimodal Retrieval-Augmented Generation (mRAG) has emerged as a promising solution to address the temporal limitations of Multimodal Large Language Models (MLLMs) in real-world scenarios like news analysis and trending topics. However, existing approaches often suffer from rigid retrieval strategies and under-utilization of visual information. To bridge this gap, we propose E-Agent, an agent framework featuring two key innovations: a mRAG planner trained to dynamically orchestrate multimodal tools based on contextual reasoning, and a task executor employing tool-aware execution sequencing to implement optimized mRAG workflows. E-Agent adopts a one-time mRAG planning strategy that enables efficient information retrieval while minimizing redundant tool invocations. To rigorously assess the planning capabilities of mRAG systems, we introduce the Real-World mRAG Planning (RemPlan) benchmark. This novel benchmark contains both retrieval-dependent and retrieval-independent question types, systematically annotated with essential retrieval tools required for each instance. The benchmark's explicit mRAG planning annotations and diverse question design enhance its practical relevance by simulating real-world scenarios requiring dynamic mRAG decisions. Experiments across RemPlan and three established benchmarks demonstrate E-Agent's superiority: 13% accuracy gain over state-of-the-art mRAG methods while reducing redundant searches by 37%.
Via

Aug 11, 2025
Abstract:Object detection (OD) has become vital for numerous computer vision applications, but deploying it on resource-constrained IoT devices presents a significant challenge. These devices, often powered by energy-efficient microcontrollers, struggle to handle the computational load of deep learning-based OD models. This issue is compounded by the rapid proliferation of IoT devices, predicted to surpass 150 billion by 2030. TinyML offers a compelling solution by enabling OD on ultra-low-power devices, paving the way for efficient and real-time processing at the edge. Although numerous survey papers have been published on this topic, they often overlook the optimization challenges associated with deploying OD models in TinyML environments. To address this gap, this survey paper provides a detailed analysis of key optimization techniques for deploying OD models on resource-constrained devices. These techniques include quantization, pruning, knowledge distillation, and neural architecture search. Furthermore, we explore both theoretical approaches and practical implementations, bridging the gap between academic research and real-world edge artificial intelligence deployment. Finally, we compare the key performance indicators (KPIs) of existing OD implementations on microcontroller devices, highlighting the achieved maturity level of these solutions in terms of both prediction accuracy and efficiency. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/christophezei/Optimizing-Object-Detection-Models-for-TinyML-A-Comprehensive-Survey.
Via

Aug 09, 2025
Abstract:Artificial intelligence (AI) -- and specifically machine learning (ML) -- applications for climate prediction across timescales are proliferating quickly. The emergence of these methods prompts a revisit to the impact of data preprocessing, a topic familiar to the climate community, as more traditional statistical models work with relatively small sample sizes. Indeed, the skill and confidence in the forecasts produced by data-driven models are directly influenced by the quality of the datasets and how they are treated during model development, thus yielding the colloquialism "garbage in, garbage out." As such, this article establishes protocols for the proper preprocessing of input data for AI/ML models designed for climate prediction (i.e., subseasonal to decadal and longer). The three aims are to: (1) educate researchers, developers, and end users on the effects that preprocessing has on climate predictions; (2) provide recommended practices for data preprocessing for such applications; and (3) empower end users to decipher whether the models they are using are properly designed for their objectives. Specific topics covered in this article include the creation of (standardized) anomalies, dealing with non-stationarity and the spatiotemporally correlated nature of climate data, and handling of extreme values and variables with potentially complex distributions. Case studies will illustrate how using different preprocessing techniques can produce different predictions from the same model, which can create confusion and decrease confidence in the overall process. Ultimately, implementing the recommended practices set forth in this article will enhance the robustness and transparency of AI/ML in climate prediction studies.
* 24 pages, 4 figures, 3 tables
Via

Aug 17, 2025
Abstract:Robot-assisted dressing is a popular but challenging topic in the field of robotic manipulation, offering significant potential to improve the quality of life for individuals with mobility limitations. Currently, the majority of research on robot-assisted dressing focuses on how to put on loose-fitting clothing, with little attention paid to tight garments. For the former, since the armscye is larger, a single robotic arm can usually complete the dressing task successfully. However, for the latter, dressing with a single robotic arm often fails due to the narrower armscye and the property of diminishing rigidity in the armscye, which eventually causes the armscye to get stuck. This paper proposes a bimanual dressing strategy suitable for dressing tight-fitting clothing. To facilitate the encoding of dressing trajectories that adapt to different human arm postures, a spherical coordinate system for dressing is established. We uses the azimuthal angle of the spherical coordinate system as a task-relevant feature for bimanual manipulation. Based on this new coordinate, we employ Gaussian Mixture Model (GMM) and Gaussian Mixture Regression (GMR) for imitation learning of bimanual dressing trajectories, generating dressing strategies that adapt to different human arm postures. The effectiveness of the proposed method is validated through various experiments.
* 8 pages, 41 figures
Via
