Abstract:While Large Language Models (LLMs) are increasingly utilized as student-facing educational aids, their potential to directly support educators, particularly through locally deployable and customizable open-source solutions, remains significantly underexplored. Many existing educational solutions rely on cloud-based infrastructure or proprietary tools, which are costly and may raise privacy concerns. Regulated industries with limited budgets require affordable, self-hosted solutions. We introduce an end-to-end, open-source framework leveraging small (3B-7B parameters), locally deployed LLMs for customized teaching material generation and assessment. Our system uniquely incorporates an interactive loop crucial for effective small-model refinement, and an auxiliary LLM verifier to mitigate jailbreaking risks, enhancing output reliability and safety. Utilizing Retrieval and Context Augmented Generation (RAG/CAG), it produces factually accurate, customized pedagogically-styled content. Deployed on-premises for data privacy and validated through an evaluation pipeline and a college physics pilot, our findings show that carefully engineered small LLM systems can offer robust, affordable, practical, and safe educator support, achieving utility comparable to larger models for targeted tasks.
Abstract:Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models (LLMs) due to their reduced computational and memory requirements. This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution. Our findings reveal that there are cases in which low-rank fine-tuning falls short in learning such shifts. This, in turn, produces non-negligible side effects, especially when fine-tuning is adopted for toxicity mitigation in pre-trained models, or in scenarios where it is important to provide fair models. Through comprehensive empirical evidence on several models, datasets, and tasks, we show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors. We also show that this extends to sequential decision-making tasks, emphasizing the need for careful evaluation to promote responsible LLMs development.