Carl von Ossietzky University Oldenburg
Abstract:As large language models (LLMs) become increasingly embedded in products used by millions, their outputs may influence individual beliefs and, cumulatively, shape public opinion. If the behavior of LLMs can be intentionally steered toward specific ideological positions, such as political or religious views, then those who control these systems could gain disproportionate influence over public discourse. Although it remains an open question whether LLMs can reliably be guided toward coherent ideological stances and whether such steering can be effectively prevented, a crucial first step is to develop methods for detecting when such steering attempts occur. In this work, we adapt a previously proposed statistical method to the new context of ideological bias auditing. Our approach carries over the model-agnostic design of the original framework, which does not require access to the internals of the language model. Instead, it identifies potential ideological steering by analyzing distributional shifts in model outputs across prompts that are thematically related to a chosen topic. This design makes the method particularly suitable for auditing proprietary black-box systems. We validate our approach through a series of experiments, demonstrating its practical applicability and its potential to support independent post hoc audits of LLM behavior.
Abstract:This paper presents an approach for verifying the behaviour of nonlinear Artificial Neural Networks (ANNs) found in cyber-physical safety-critical systems. We implement a dedicated interval constraint propagator for the sigmoid function into the SMT solver iSAT and compare this approach with a compositional approach encoding the sigmoid function by basic arithmetic features available in iSAT and an approximating approach. Our experimental results show that the dedicated and the compositional approach clearly outperform the approximating approach. Throughout all our benchmarks, the dedicated approach showed an equal or better performance compared to the compositional approach.