Abstract:The evaluation of large language models is a complex task, in which several approaches have been proposed. The most common is the use of automated benchmarks in which LLMs have to answer multiple-choice questions of different topics. However, this method has certain limitations, being the most concerning, the poor correlation with the humans. An alternative approach, is to have humans evaluate the LLMs. This poses scalability issues as there is a large and growing number of models to evaluate making it impractical (and costly) to run traditional studies based on recruiting a number of evaluators and having them rank the responses of the models. An alternative approach is the use of public arenas, such as the popular LM arena, on which any user can freely evaluate models on any question and rank the responses of two models. The results are then elaborated into a model ranking. An increasingly important aspect of LLMs is their energy consumption and, therefore, evaluating how energy awareness influences the decisions of humans in selecting a model is of interest. In this paper, we present GEA, the Generative Energy Arena, an arena that incorporates information on the energy consumption of the model in the evaluation process. Preliminary results obtained with GEA are also presented, showing that for most questions, when users are aware of the energy consumption, they favor smaller and more energy efficient models. This suggests that for most user interactions, the extra cost and energy incurred by the more complex and top-performing models do not provide an increase in the perceived quality of the responses that justifies their use.
Abstract:Leaderboards showcase the current capabilities and limitations of Large Language Models (LLMs). To motivate the development of LLMs that represent the linguistic and cultural diversity of the Spanish-speaking community, we present La Leaderboard, the first open-source leaderboard to evaluate generative LLMs in languages and language varieties of Spain and Latin America. La Leaderboard is a community-driven project that aims to establish an evaluation standard for everyone interested in developing LLMs for the Spanish-speaking community. This initial version combines 66 datasets in Basque, Catalan, Galician, and different Spanish varieties, showcasing the evaluation results of 50 models. To encourage community-driven development of leaderboards in other languages, we explain our methodology, including guidance on selecting the most suitable evaluation setup for each downstream task. In particular, we provide a rationale for using fewer few-shot examples than typically found in the literature, aiming to reduce environmental impact and facilitate access to reproducible results for a broader research community.
Abstract:Multimodal Large Language Models which can answer complex questions on an image struggle to tell the time on analog clocks. This is probably due to the lack of images with clocks at different times in their training set. In this work we explore this issue with one of the latest MLLMs: GPT-4.1 to understand why MLLMs fail to tell the time and whether fine-tuning can solve the problem. The results show how models are making progress in reading the time on analog clocks. But have they really learned to do it, or have they only learned patterns in their training datasets? In this work we put the models to the test with different clocks to illustrate the limitations of MLLMs to abstract and generalize.
Abstract:The proliferation of Generative Artificial Ingelligence (AI), especially Large Language Models, presents transformative opportunities for urban applications through Urban Foundation Models. However, base models face limitations, as they only contain the knowledge available at the time of training, and updating them is both time-consuming and costly. Retrieval Augmented Generation (RAG) has emerged in the literature as the preferred approach for injecting contextual information into Foundation Models. It prevails over techniques such as fine-tuning, which are less effective in dynamic, real-time scenarios like those found in urban environments. However, traditional RAG architectures, based on semantic databases, knowledge graphs, structured data, or AI-powered web searches, do not fully meet the demands of urban contexts. Urban environments are complex systems characterized by large volumes of interconnected data, frequent updates, real-time processing requirements, security needs, and strong links to the physical world. This work proposes a real-time spatial RAG architecture that defines the necessary components for the effective integration of generative AI into cities, leveraging temporal and spatial filtering capabilities through linked data. The proposed architecture is implemented using FIWARE, an ecosystem of software components to develop smart city solutions and digital twins. The design and implementation are demonstrated through the use case of a tourism assistant in the city of Madrid. The use case serves to validate the correct integration of Foundation Models through the proposed RAG architecture.
Abstract:The speed of open-weights large language models (LLMs) and its dependency on the task at hand, when run on GPUs, is studied to present a comparative analysis of the speed of the most popular open LLMs.
Abstract:This column advocates for including artificial intelligence (AI)-specific metadata on those academic papers that are written with the help of AI in an attempt to analyze the use of such tools for disseminating research.
Abstract:Large language models (LLMs) struggle on simple tasks such as counting the number of occurrences of a letter in a word. In this paper, we investigate if ChatGPT can learn to count letters and propose an efficient solution.
Abstract:One of the most widely used methods to evaluate LLMs are Multiple Choice Question (MCQ) tests. MCQ benchmarks enable the testing of LLM knowledge on almost any topic at scale as the results can be processed automatically. To help the LLM answer, a few examples called few shots can be included in the prompt. Moreover, the LLM can be asked to answer the question directly with the selected option or to first provide the reasoning and then the selected answer, which is known as chain of thought. In addition to checking whether the selected answer is correct, the evaluation can look at the LLM-estimated probability of its response as an indication of the confidence of the LLM in the response. In this paper, we study how the LLM confidence in its answer depends on whether the model has been asked to answer directly or to provide the reasoning before answering. The results of the evaluation of questions on a wide range of topics in seven different models show that LLMs are more confident in their answers when they provide reasoning before the answer. This occurs regardless of whether the selected answer is correct. Our hypothesis is that this behavior is due to the reasoning that modifies the probability of the selected answer, as the LLM predicts the answer based on the input question and the reasoning that supports the selection made. Therefore, LLM estimated probabilities seem to have intrinsic limitations that should be understood in order to use them in evaluation procedures. Interestingly, the same behavior has been observed in humans, for whom explaining an answer increases confidence in its correctness.
Abstract:Large Language Models (LLMs) have achieved unprecedented performance on many complex tasks, being able, for example, to answer questions on almost any topic. However, they struggle with other simple tasks, such as counting the occurrences of letters in a word, as illustrated by the inability of many LLMs to count the number of "r" letters in "strawberry". Several works have studied this problem and linked it to the tokenization used by LLMs, to the intrinsic limitations of the attention mechanism, or to the lack of character-level training data. In this paper, we conduct an experimental study to evaluate the relations between the LLM errors when counting letters with 1) the frequency of the word and its components in the training dataset and 2) the complexity of the counting operation. We present a comprehensive analysis of the errors of LLMs when counting letter occurrences by evaluating a representative group of models over a large number of words. The results show a number of consistent trends in the models evaluated: 1) models are capable of recognizing the letters but not counting them; 2) the frequency of the word and tokens in the word does not have a significant impact on the LLM errors; 3) there is a positive correlation of letter frequency with errors, more frequent letters tend to have more counting errors, 4) the errors show a strong correlation with the number of letters or tokens in a word and 5) the strongest correlation occurs with the number of letters with counts larger than one, with most models being unable to correctly count words in which letters appear more than twice.
Abstract:The rise of AI and the Internet of Things is accelerating the digital transformation of society. Mobility computing presents specific barriers due to its real-time requirements, decentralization, and connectivity through wireless networks. New research on edge computing and tiny machine learning (tinyML) explores the execution of AI models on low-performance devices to address these issues. However, there are not many studies proposing agnostic architectures that manage the entire lifecycle of intelligent cyberphysical systems. This article extends a previous architecture based on FIWARE software components to implement the machine learning operations flow, enabling the management of the entire tinyML lifecycle in cyberphysical systems. We also provide a use case to showcase how to implement the FIWARE architecture through a complete example of a smart traffic system. We conclude that the FIWARE ecosystem constitutes a real reference option for developing tinyML and edge computing in cyberphysical systems.