Robust and accurate perception of dynamic objects and map elements is crucial for autonomous vehicles performing safe navigation in complex traffic scenarios. While vision-only methods have become the de facto standard due to their technical advances, they can benefit from effective and cost-efficient fusion with radar measurements. In this work, we advance fusion methods by repurposing Gaussian Splatting as an efficient universal view transformer that bridges the view disparity gap, mapping both image pixels and radar points into a common Bird's-Eye View (BEV) representation. Our main contribution is GaussianCaR, an end-to-end network for BEV segmentation that, unlike prior BEV fusion methods, leverages Gaussian Splatting to map raw sensor information into latent features for efficient camera-radar fusion. Our architecture combines multi-scale fusion with a transformer decoder to efficiently extract BEV features. Experimental results demonstrate that our approach achieves performance on par with, or even surpassing, the state of the art on BEV segmentation tasks (57.3%, 82.9%, and 50.1% IoU for vehicles, roads, and lane dividers) on the nuScenes dataset, while maintaining a 3.2x faster inference runtime. Code and project page are available online.
Thermal imaging provides a practical sensing modality for visual SLAM in visually degraded environments such as low illumination, smoke, or adverse weather. However, thermal imagery often exhibits low texture, low contrast, and high noise, complicating feature-based SLAM. In this work, we propose a sparse monocular graph-based SLAM system for thermal imagery that leverages general-purpose learned features -- the SuperPoint detector and LightGlue matcher, trained on large-scale visible-spectrum data to improve cross-domain generalization. To adapt these components to thermal data, we introduce a preprocessing pipeline to enhance input suitability and modify core SLAM modules to handle sparse and outlier-prone feature matches. We further incorporate keypoint confidence scores from SuperPoint into a confidence-weighted factor graph to improve estimation robustness. Evaluations on public thermal datasets demonstrate that the proposed system achieves reliable performance without requiring dataset-specific training or fine-tuning a desired feature detector, given the scarcity of quality thermal data. Code will be made available upon publication.
Deep learning has the potential to improve colonoscopy by enabling 3D reconstruction of the colon, providing a comprehensive view of mucosal surfaces and lesions, and facilitating the identification of unexplored areas. However, the development of robust methods is limited by the scarcity of large-scale ground truth data. We propose RealSynCol, a highly realistic synthetic dataset designed to replicate the endoscopic environment. Colon geometries extracted from 10 CT scans were imported into a virtual environment that closely mimics intraoperative conditions and rendered with realistic vascular textures. The resulting dataset comprises 28\,130 frames, paired with ground truth depth maps, optical flow, 3D meshes, and camera trajectories. A benchmark study was conducted to evaluate the available synthetic colon datasets for the tasks of depth and pose estimation. Results demonstrate that the high realism and variability of RealSynCol significantly enhance generalization performance on clinical images, proving it to be a powerful tool for developing deep learning algorithms to support endoscopic diagnosis.
Although vision foundation models (VFMs) are increasingly reused for biomedical image analysis, it remains unclear whether the latent representations they provide are general enough to support effective transfer and reuse across heterogeneous microscopy image datasets. Here, we study this question for the problem of mitochondria segmentation in electron microscopy (EM) images, using two popular public EM datasets (Lucchi++ and VNC) and three recent representative VFMs (DINOv2, DINOv3, and OpenCLIP). We evaluate two practical model adaptation regimes: a frozen-backbone setting in which only a lightweight segmentation head is trained on top of the VFM, and parameter-efficient fine-tuning (PEFT) via Low-Rank Adaptation (LoRA) in which the VFM is fine-tuned in a targeted manner to a specific dataset. Across all backbones, we observe that training on a single EM dataset yields good segmentation performance (quantified as foreground Intersection-over-Union), and that LoRA consistently improves in-domain performance. In contrast, training on multiple EM datasets leads to severe performance degradation for all models considered, with only marginal gains from PEFT. Exploration of the latent representation space through various techniques (PCA, Fréchet Dinov2 distance, and linear probes) reveals a pronounced and persistent domain mismatch between the two considered EM datasets in spite of their visual similarity, which is consistent with the observed failure of paired training. These results suggest that, while VFMs can deliver competitive results for EM segmentation within a single domain under lightweight adaptation, current PEFT strategies are insufficient to obtain a single robust model across heterogeneous EM datasets without additional domain-alignment mechanisms.
Skull stripping magnetic resonance images (MRI) of the human brain is an important process in many image processing techniques, such as automatic segmentation of brain structures. Numerous methods have been developed to perform this task, however, they often fail in the presence of neuropathology and can be inconsistent in defining the boundary of the brain mask. Here, we propose a novel approach to skull strip T1-weighted images in a robust and efficient manner, aiming to consistently segment the outer surface of the brain, including the sulcal cerebrospinal fluid (CSF), while excluding the full extent of the subarachnoid space and meninges. We train a modified version of the U-net on silver-standard ground truth data using a novel loss function based on the signed-distance transform (SDT). We validate our model both qualitatively and quantitatively using held-out data from the training dataset, as well as an independent external dataset. The brain masks used for evaluation partially or fully include the subarachnoid space, which may introduce bias into the comparison; nonetheless, our model demonstrates strong performance on the held-out test data, achieving a consistent mean Dice similarity coefficient (DSC) of 0.964$\pm$0.006 and an average symmetric surface distance (ASSD) of 1.4mm$\pm$0.2mm. Performance on the external dataset is comparable, with a DSC of 0.958$\pm$0.006 and an ASSD of 1.7$\pm$0.2mm. Our method achieves performance comparable to or better than existing state-of-the-art methods for brain extraction, particularly in its highly consistent preservation of the brain's outer surface. The method is publicly available on GitHub.
To elicit capabilities for addressing complex and implicit visual requirements, recent unified multimodal models increasingly adopt chain-of-thought reasoning to guide image generation. However, the actual effect of reasoning on visual synthesis remains unclear. We present UReason, a diagnostic benchmark for reasoning-driven image generation that evaluates whether reasoning can be faithfully executed in pixels. UReason contains 2,000 instances across five task families: Code, Arithmetic, Spatial, Attribute, and Text reasoning. To isolate the role of reasoning traces, we introduce an evaluation framework comparing direct generation, reasoning-guided generation, and de-contextualized generation which conditions only on the refined prompt. Across eight open-source unified models, we observe a consistent Reasoning Paradox: Reasoning traces generally improve performance over direct generation, yet retaining intermediate thoughts as conditioning context often hinders visual synthesis, and conditioning only on the refined prompt yields substantial gains. Our analysis suggests that the bottleneck lies in contextual interference rather than insufficient reasoning capacity. UReason provides a principled testbed for studying reasoning in unified models and motivates future methods that effectively integrate reasoning for visual generation while mitigating interference.
We study homology of ample groupoids via the compactly supported Moore complex of the nerve. Let $A$ be a topological abelian group. For $n\ge 0$ set $C_n(\mathcal G;A) := C_c(\mathcal G_n,A)$ and define $\partial_n^A=\sum_{i=0}^n(-1)^i(d_i)_*$. This defines $H_n(\mathcal G;A)$. The theory is functorial for continuous étale homomorphisms. It is compatible with standard reductions, including restriction to saturated clopen subsets. In the ample setting it is invariant under Kakutani equivalence. We reprove Matui type long exact sequences and identify the comparison maps at chain level. For discrete $A$ we prove a natural universal coefficient short exact sequence $$0\to H_n(\mathcal G)\otimes_{\mathbb Z}A\xrightarrow{\ ι_n^{\mathcal G}\ }H_n(\mathcal G;A)\xrightarrow{\ κ_n^{\mathcal G}\ }\operatorname{Tor}_1^{\mathbb Z}\bigl(H_{n-1}(\mathcal G),A\bigr)\to 0.$$ The key input is the chain level isomorphism $C_c(\mathcal G_n,\mathbb Z)\otimes_{\mathbb Z}A\cong C_c(\mathcal G_n,A)$, which reduces the groupoid statement to the classical algebraic UCT for the free complex $C_c(\mathcal G_\bullet,\mathbb Z)$. We also isolate the obstruction for non-discrete coefficients. For a locally compact totally disconnected Hausdorff space $X$ with a basis of compact open sets, the image of $Φ_X:C_c(X,\mathbb Z)\otimes_{\mathbb Z}A\to C_c(X,A)$ is exactly the compactly supported functions with finite image. Thus $Φ_X$ is surjective if and only if every $f\in C_c(X,A)$ has finite image, and for suitable $X$ one can produce compactly supported continuous maps $X\to A$ with infinite image. Finally, for a clopen saturated cover $\mathcal G_0=U_1\cup U_2$ we construct a short exact sequence of Moore complexes and derive a Mayer-Vietoris long exact sequence for $H_\bullet(\mathcal G;A)$ for explicit computations.
The recent proliferation of diffusion models has made style mimicry effortless, enabling users to imitate unique artistic styles without authorization. In deployed platforms, this raises copyright and intellectual-property risks and calls for reliable protection. However, existing countermeasures either require costly weight editing as new styles emerge or rely on an explicitly specified editing style, limiting their practicality for deployment-side safety. To address this challenge, we propose DICE (Disentanglement of artist Style from Content via Contrastive Subspace Decomposition), a training-free framework for on-the-fly artist style erasure. Unlike style editing that require an explicitly specified replacement style, DICE performs style purification, removing the artist's characteristics while preserving the user-intended content. Our core insight is that a model cannot truly comprehend the artist style from a single text or image alone. Consequently, we abandon the traditional paradigm of identifying style from isolated samples. Instead, we construct contrastive triplets to compel the model to distinguish between style and non-style features in the latent space. By formalizing this disentanglement process as a solvable generalized eigenvalue problem, we achieve precise identification of the style subspace. Furthermore, we introduce an Adaptive Attention Decoupling Editing strategy dynamically assesses the style concentration of each token and performs differential suppression and content enhancement on the QKV vectors. Extensive experiments demonstrate that DICE achieves a superior balance between the thoroughness of style erasure and the preservation of content integrity. DICE introduces an additional overhead of only 3 seconds to disentangle style, providing a practical and efficient technique for curbing style mimicry.
To tackle the automatic recognition of "concealed emotions" in videos, this paper proposes a multimodal weak-supervision framework and achieves state-of-the-art results on the iMiGUE tennis-interview dataset. First, YOLO 11x detects and crops human portraits frame-by-frame, and DINOv2-Base extracts visual features from the cropped regions. Next, by integrating Chain-of-Thought and Reflection prompting (CoT + Reflection), Gemini 2.5 Pro automatically generates pseudo-labels and reasoning texts that serve as weak supervision for downstream models. Subsequently, OpenPose produces 137-dimensional key-point sequences, augmented with inter-frame offset features; the usual graph neural network backbone is simplified to an MLP to efficiently model the spatiotemporal relationships of the three key-point streams. An ultra-long-sequence Transformer independently encodes both the image and key-point sequences, and their representations are concatenated with BERT-encoded interview transcripts. Each modality is first pre-trained in isolation, then fine-tuned jointly, with pseudo-labeled samples merged into the training set for further gains. Experiments demonstrate that, despite severe class imbalance, the proposed approach lifts accuracy from under 0.6 in prior work to over 0.69, establishing a new public benchmark. The study also validates that an "MLP-ified" key-point backbone can match - or even surpass - GCN-based counterparts in this task.
The clinical application of cone-beam computed tomography (CBCT) is constrained by the inherent trade-off between radiation exposure and image quality. Ultra-sparse angular sampling, employed to reduce dose, introduces severe undersampling artifacts and inter-slice inconsistencies, compromising diagnostic reliability. Existing reconstruction methods often struggle to balance angular continuity with spatial detail fidelity. To address these challenges, we propose a Continuity-driven Synergistic Diffusion with Neural priors (CSDN) for ultra-sparse-view CBCT reconstruction. Neural priors are introduced as a structural foundation to encode a continuous threedimensional attenuation representation, enabling the synthesis of physically consistent dense projections from ultra-sparse measurements. Building upon this neural-prior-based initialization, a synergistic diffusion strategy is developed, consisting of two collaborative refinement paths: a Sinogram Refinement Diffusion (Sino-RD) process that restores angular continuity and a Digital Radiography Refinement Diffusion (DR-RD) process that enforces inter-slice consistency from the projection image perspective. The outputs of the two diffusion paths are adaptively fused by the Dual-Projection Reconstruction Fusion (DPRF) module to achieve coherent volumetric reconstruction. Extensive experiments demonstrate that the proposed CSDN effectively suppresses artifacts and recovers fine textures under ultra-sparse-view conditions, outperforming existing state-of-the-art techniques.