Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.




Accurate intrinsic decomposition of face images under unconstrained lighting is a prerequisite for photorealistic relighting, high-fidelity digital doubles, and augmented-reality effects. This paper introduces MAGINet, a Multi-scale Attention-Guided Intrinsics Network that predicts a $512\times512$ light-normalized diffuse albedo map from a single RGB portrait. MAGINet employs hierarchical residual encoding, spatial-and-channel attention in a bottleneck, and adaptive multi-scale feature fusion in the decoder, yielding sharper albedo boundaries and stronger lighting invariance than prior U-Net variants. The initial albedo prediction is upsampled to $1024\times1024$ and refined by a lightweight three-layer CNN (RefinementNet). Conditioned on this refined albedo, a Pix2PixHD-based translator then predicts a comprehensive set of five additional physically based rendering passes: ambient occlusion, surface normal, specular reflectance, translucency, and raw diffuse colour (with residual lighting). Together with the refined albedo, these six passes form the complete intrinsic decomposition. Trained with a combination of masked-MSE, VGG, edge, and patch-LPIPS losses on the FFHQ-UV-Intrinsics dataset, the full pipeline achieves state-of-the-art performance for diffuse albedo estimation and demonstrates significantly improved fidelity for the complete rendering stack compared to prior methods. The resulting passes enable high-quality relighting and material editing of real faces.
Recent pose-to-video models can translate 2D pose sequences into photorealistic, identity-preserving dance videos, so the key challenge is to generate temporally coherent, rhythm-aligned 2D poses from music, especially under complex, high-variance in-the-wild distributions. We address this by reframing music-to-dance generation as a music-token-conditioned multi-channel image synthesis problem: 2D pose sequences are encoded as one-hot images, compressed by a pretrained image VAE, and modeled with a DiT-style backbone, allowing us to inherit architectural and training advances from modern text-to-image models and better capture high-variance 2D pose distributions. On top of this formulation, we introduce (i) a time-shared temporal indexing scheme that explicitly synchronizes music tokens and pose latents over time and (ii) a reference-pose conditioning strategy that preserves subject-specific body proportions and on-screen scale while enabling long-horizon segment-and-stitch generation. Experiments on a large in-the-wild 2D dance corpus and the calibrated AIST++2D benchmark show consistent improvements over representative music-to-dance methods in pose- and video-space metrics and human preference, and ablations validate the contributions of the representation, temporal indexing, and reference conditioning. See supplementary videos at https://hot-dance.github.io
Over the past decade, several studies have explored the potential of magnetic resonance fingerprinting (MRF) for the quantification of brain hemodynamics, oxygenation, and perfusion. Recent advances in simulation models and reconstruction frameworks have also significantly enhanced the accuracy of vascular parameter estimation. This review provides an overview of key vascular MRF studies, emphasizing advancements in geometrical models for vascular simulations, novel sequences, and state-of-the-art reconstruction techniques incorporating machine learning and deep learning algorithms. Both pre-clinical and clinical applications are discussed. Based on these findings, we outline future directions and development areas that need to be addressed to facilitate their clinical translation. Evidence Level N/A. Technical Efficacy Stage 1.
Image captioning is essential in many fields including assisting visually impaired individuals, improving content management systems, and enhancing human-computer interaction. However, a recent challenge in this domain is dealing with low-resolution image (LRI). While performance can be improved by using larger models like transformers for encoding, these models are typically heavyweight, demanding significant computational resources and memory, leading to challenges in retraining. To address this, the proposed SOLI (Siamese-Driven Optimization for Low-Resolution Image Latent Embedding in Image Captioning) approach presents a solution specifically designed for lightweight, low-resolution images captioning. It employs a Siamese network architecture to optimize latent embeddings, enhancing the efficiency and accuracy of the image-to-text translation process. By focusing on a dual-pathway neural network structure, SOLI minimizes computational overhead without sacrificing performance, making it an ideal choice for training on resource-constrained scenarios.
The dynamics of glaciers and ice shelf fronts significantly impact the mass balance of ice sheets and coastal sea levels. To effectively monitor glacier conditions, it is crucial to consistently estimate positional shifts of glacier calving fronts. AMD-HookNet firstly introduces a pure two-branch convolutional neural network (CNN) for glacier segmentation. Yet, the local nature and translational invariance of convolution operations, while beneficial for capturing low-level details, restricts the model ability to maintain long-range dependencies. In this study, we propose AMD-HookNet++, a novel advanced hybrid CNN-Transformer feature enhancement method for segmenting glaciers and delineating calving fronts in synthetic aperture radar images. Our hybrid structure consists of two branches: a Transformer-based context branch to capture long-range dependencies, which provides global contextual information in a larger view, and a CNN-based target branch to preserve local details. To strengthen the representation of the connected hybrid features, we devise an enhanced spatial-channel attention module to foster interactions between the hybrid CNN-Transformer branches through dynamically adjusting the token relationships from both spatial and channel perspectives. Additionally, we develop a pixel-to-pixel contrastive deep supervision to optimize our hybrid model by integrating pixelwise metric learning into glacier segmentation. Through extensive experiments and comprehensive quantitative and qualitative analyses on the challenging glacier segmentation benchmark dataset CaFFe, we show that AMD-HookNet++ sets a new state of the art with an IoU of 78.2 and a HD95 of 1,318 m, while maintaining a competitive MDE of 367 m. More importantly, our hybrid model produces smoother delineations of calving fronts, resolving the issue of jagged edges typically seen in pure Transformer-based approaches.




Focusing on low-resource languages is an essential step toward democratizing generative AI. In this work, we contribute to reducing the multimodal NLP resource gap for Romanian. We translate the widely known Flickr30k dataset into Romanian and further extend it for visual question answering by leveraging open-source LLMs. We demonstrate the usefulness of our datasets by fine-tuning open-source VLMs on Romanian visual question answering. We select VLMs from three widely used model families: LLaMA 3.2, LLaVA 1.6, and Qwen2. For fine-tuning, we employ the parameter-efficient LoRA method. Our models show improved Romanian capabilities in visual QA, as well as on tasks they were not trained on, such as Romanian image description generation. The seven-billion-parameter Qwen2-VL-RoVQA obtains top scores on both tasks, with improvements of +6.05% and +2.61% in BERTScore F1 over its original version. Finally, the models show substantial reductions in grammatical errors compared to their original forms, indicating improvements not only in language understanding but also in Romanian fluency.
Accurate localization is essential for autonomous vehicles, yet sensor noise and drift over time can lead to significant pose estimation errors, particularly in long-horizon environments. A common strategy for correcting accumulated error is visual loop closure in SLAM, which adjusts the pose graph when the agent revisits previously mapped locations. These techniques typically rely on identifying visual mappings between the current view and previously observed scenes and often require fusing data from multiple sensors. In contrast, this work introduces NeRF-Assisted 3D-3D Pose Alignment (NAP3D), a complementary approach that leverages 3D-3D correspondences between the agent's current depth image and a pre-trained Neural Radiance Field (NeRF). By directly aligning 3D points from the observed scene with synthesized points from the NeRF, NAP3D refines the estimated pose even from novel viewpoints, without relying on revisiting previously observed locations. This robust 3D-3D formulation provides advantages over conventional 2D-3D localization methods while remaining comparable in accuracy and applicability. Experiments demonstrate that NAP3D achieves camera pose correction within 5 cm on a custom dataset, robustly outperforming a 2D-3D Perspective-N-Point baseline. On TUM RGB-D, NAP3D consistently improves 3D alignment RMSE by approximately 6 cm compared to this baseline given varying noise, despite PnP achieving lower raw rotation and translation parameter error in some regimes, highlighting NAP3D's improved geometric consistency in 3D space. By providing a lightweight, dataset-agnostic tool, NAP3D complements existing SLAM and localization pipelines when traditional loop closure is unavailable.
The quality of the latent space in visual tokenizers (e.g., VAEs) is crucial for modern generative models. However, the standard reconstruction-based training paradigm produces a latent space that is biased towards low-level information, leading to a foundation flaw: better pixel-level accuracy does not lead to higher-quality generation. This implies that pouring extensive compute into visual tokenizer pre-training translates poorly to improved performance in generation. We identify this as the ``pre-training scaling problem`` and suggest a necessary shift: to be effective for generation, a latent space must concisely represent high-level semantics. We present VTP, a unified visual tokenizer pre-training framework, pioneering the joint optimization of image-text contrastive, self-supervised, and reconstruction losses. Our large-scale study reveals two principal findings: (1) understanding is a key driver of generation, and (2) much better scaling properties, where generative performance scales effectively with compute, parameters, and data allocated to the pretraining of the visual tokenizer. After large-scale pre-training, our tokenizer delivers a competitive profile (78.2 zero-shot accuracy and 0.36 rFID on ImageNet) and 4.1 times faster convergence on generation compared to advanced distillation methods. More importantly, it scales effectively: without modifying standard DiT training specs, solely investing more FLOPS in pretraining VTP achieves 65.8\% FID improvement in downstream generation, while conventional autoencoder stagnates very early at 1/10 FLOPS. Our pre-trained models are available at https://github.com/MiniMax-AI/VTP.
Automated generation of diagnostic pathology reports directly from whole slide images (WSIs) is an emerging direction in computational pathology. Translating high-resolution tissue patterns into clinically coherent text remains difficult due to large morphological variability and the complex structure of pathology narratives. We introduce MPath, a lightweight multimodal framework that conditions a pretrained biomedical language model (BioBART) on WSI-derived visual embeddings through a learned visual-prefix prompting mechanism. Instead of end-to-end vision-language pretraining, MPath leverages foundation-model WSI features (CONCH + Titan) and injects them into BioBART via a compact projection module, keeping the language backbone frozen for stability and data efficiency. MPath was developed and evaluated on the RED 2025 Grand Challenge dataset and ranked 4th in Test Phase 2, despite limited submission opportunities. The results highlight the potential of prompt-based multimodal conditioning as a scalable and interpretable strategy for pathology report generation.
Recovering high-fidelity 3D images from sparse or degraded 2D images is a fundamental challenge in medical imaging, with broad applications ranging from 3D ultrasound reconstruction to MRI super-resolution. In the context of fetal MRI, high-resolution 3D reconstruction of the brain from motion-corrupted low-resolution 2D acquisitions is a prerequisite for accurate neurodevelopmental diagnosis. While implicit neural representations (INRs) have recently established state-of-the-art performance in self-supervised slice-to-volume reconstruction (SVR), they suffer from a critical computational bottleneck: accurately modeling the image acquisition physics requires expensive stochastic Monte Carlo sampling to approximate the point spread function (PSF). In this work, we propose a shift from neural network based implicit representations to Gaussian based explicit representations. By parameterizing the HR 3D image volume as a field of anisotropic Gaussian primitives, we leverage the property of Gaussians being closed under convolution and thus derive a \textit{closed-form analytical solution} for the forward model. This formulation reduces the previously intractable acquisition integral to an exact covariance addition ($\mathbfΣ_{obs} = \mathbfΣ_{HR} + \mathbfΣ_{PSF}$), effectively bypassing the need for compute-intensive stochastic sampling while ensuring exact gradient propagation. We demonstrate that our approach matches the reconstruction quality of self-supervised state-of-the-art SVR frameworks while delivering a 5$\times$--10$\times$ speed-up on neonatal and fetal data. With convergence often reached in under 30 seconds, our framework paves the way towards translation into clinical routine of real-time fetal 3D MRI. Code will be public at {https://github.com/m-dannecker/Gaussian-Primitives-for-Fast-SVR}.