Few Shot Learning


Few-shot learning is a machine-learning paradigm where models are trained with limited labeled data.

Semantic Channel Equalization Strategies for Deep Joint Source-Channel Coding

Add code
Oct 06, 2025
Viaarxiv icon

HyperVLA: Efficient Inference in Vision-Language-Action Models via Hypernetworks

Add code
Oct 06, 2025
Viaarxiv icon

Foundation Visual Encoders Are Secretly Few-Shot Anomaly Detectors

Add code
Oct 02, 2025
Viaarxiv icon

Continual Personalization for Diffusion Models

Add code
Oct 02, 2025
Viaarxiv icon

Agent Fine-tuning through Distillation for Domain-specific LLMs in Microdomains

Add code
Oct 01, 2025
Viaarxiv icon

SLAP: Learning Speaker and Health-Related Representations from Natural Language Supervision

Add code
Oct 02, 2025
Viaarxiv icon

MPMAvatar: Learning 3D Gaussian Avatars with Accurate and Robust Physics-Based Dynamics

Add code
Oct 02, 2025
Viaarxiv icon

ReTabAD: A Benchmark for Restoring Semantic Context in Tabular Anomaly Detection

Add code
Oct 02, 2025
Viaarxiv icon

Are LLMs Better GNN Helpers? Rethinking Robust Graph Learning under Deficiencies with Iterative Refinement

Add code
Oct 02, 2025
Viaarxiv icon

Flock: A Knowledge Graph Foundation Model via Learning on Random Walks

Add code
Oct 01, 2025
Viaarxiv icon