Data Intelligence Laboratory, LG AI Research
Abstract:Despite the widespread use of tabular data in real-world applications, most benchmarks rely on average-case metrics, which fail to reveal how model behavior varies across diverse data regimes. To address this, we propose MultiTab, a benchmark suite and evaluation framework for multi-dimensional, data-aware analysis of tabular learning algorithms. Rather than comparing models only in aggregate, MultiTab categorizes 196 publicly available datasets along key data characteristics, including sample size, label imbalance, and feature interaction, and evaluates 13 representative models spanning a range of inductive biases. Our analysis shows that model performance is highly sensitive to such regimes: for example, models using sample-level similarity excel on datasets with large sample sizes or high inter-feature correlation, while models encoding inter-feature dependencies perform best with weakly correlated features. These findings reveal that inductive biases do not always behave as intended, and that regime-aware evaluation is essential for understanding and improving model behavior. MultiTab enables more principled model design and offers practical guidance for selecting models tailored to specific data characteristics. All datasets, code, and optimization logs are publicly available at https://huggingface.co/datasets/LGAI-DILab/Multitab.
Abstract:The extraction of molecular structures and reaction data from scientific documents is challenging due to their varied, unstructured chemical formats and complex document layouts. To address this, we introduce MolMole, a vision-based deep learning framework that unifies molecule detection, reaction diagram parsing, and optical chemical structure recognition (OCSR) into a single pipeline for automating the extraction of chemical data directly from page-level documents. Recognizing the lack of a standard page-level benchmark and evaluation metric, we also present a testset of 550 pages annotated with molecule bounding boxes, reaction labels, and MOLfiles, along with a novel evaluation metric. Experimental results demonstrate that MolMole outperforms existing toolkits on both our benchmark and public datasets. The benchmark testset will be publicly available, and the MolMole toolkit will be accessible soon through an interactive demo on the LG AI Research website. For commercial inquiries, please contact us at \href{mailto:contact_ddu@lgresearch.ai}{contact\_ddu@lgresearch.ai}.
Abstract:Vision Transformers (ViTs) have achieved remarkable success in various computer vision tasks. However, ViTs have a huge computational cost due to their inherent reliance on multi-head self-attention (MHSA), prompting efforts to accelerate ViTs for practical applications. To this end, recent works aim to reduce the number of tokens, mainly focusing on how to effectively prune or merge them. Nevertheless, since ViT tokens are generated from non-overlapping grid patches, they usually do not convey sufficient semantics, making it incompatible with efficient ViTs. To address this, we propose ImagePiece, a novel re-tokenization strategy for Vision Transformers. Following the MaxMatch strategy of NLP tokenization, ImagePiece groups semantically insufficient yet locally coherent tokens until they convey meaning. This simple retokenization is highly compatible with previous token reduction methods, being able to drastically narrow down relevant tokens, enhancing the inference speed of DeiT-S by 54% (nearly 1.5$\times$ faster) while achieving a 0.39% improvement in ImageNet classification accuracy. For hyper-speed inference scenarios (with 251% acceleration), our approach surpasses other baselines by an accuracy over 8%.
Abstract:This technical report introduces the EXAONE 3.5 instruction-tuned language models, developed and released by LG AI Research. The EXAONE 3.5 language models are offered in three configurations: 32B, 7.8B, and 2.4B. These models feature several standout capabilities: 1) exceptional instruction following capabilities in real-world scenarios, achieving the highest scores across seven benchmarks, 2) outstanding long-context comprehension, attaining the top performance in four benchmarks, and 3) competitive results compared to state-of-the-art open models of similar sizes across nine general benchmarks. The EXAONE 3.5 language models are open to anyone for research purposes and can be downloaded from https://huggingface.co/LGAI-EXAONE. For commercial use, please reach out to the official contact point of LG AI Research: contact_us@lgresearch.ai.
Abstract:Out-of-distribution (OOD) detection, which determines whether a given sample is part of the in-distribution (ID), has recently shown promising results through training with synthetic OOD datasets. Nonetheless, existing methods often produce outliers that are considerably distant from the ID, showing limited efficacy for capturing subtle distinctions between ID and OOD. To address these issues, we propose a novel framework, Semantic Outlier generation via Nuisance Awareness (SONA), which notably produces challenging outliers by directly leveraging pixel-space ID samples through diffusion models. Our approach incorporates SONA guidance, providing separate control over semantic and nuisance regions of ID samples. Thereby, the generated outliers achieve two crucial properties: (i) they present explicit semantic-discrepant information, while (ii) maintaining various levels of nuisance resemblance with ID. Furthermore, the improved OOD detector training with SONA outliers facilitates learning with a focus on semantic distinctions. Extensive experiments demonstrate the effectiveness of our framework, achieving an impressive AUROC of 88% on near-OOD datasets, which surpasses the performance of baseline methods by a significant margin of approximately 6%.
Abstract:We introduce EXAONE 3.0 instruction-tuned language model, the first open model in the family of Large Language Models (LLMs) developed by LG AI Research. Among different model sizes, we publicly release the 7.8B instruction-tuned model to promote open research and innovations. Through extensive evaluations across a wide range of public and in-house benchmarks, EXAONE 3.0 demonstrates highly competitive real-world performance with instruction-following capability against other state-of-the-art open models of similar size. Our comparative analysis shows that EXAONE 3.0 excels particularly in Korean, while achieving compelling performance across general tasks and complex reasoning. With its strong real-world effectiveness and bilingual proficiency, we hope that EXAONE keeps contributing to advancements in Expert AI. Our EXAONE 3.0 instruction-tuned model is available at https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
Abstract:The ability of deep networks to learn superior representations hinges on leveraging the proper inductive biases, considering the inherent properties of datasets. In tabular domains, it is critical to effectively handle heterogeneous features (both categorical and numerical) in a unified manner and to grasp irregular functions like piecewise constant functions. To address the challenges in the self-supervised learning framework, we propose a novel pretext task based on the classical binning method. The idea is straightforward: reconstructing the bin indices (either orders or classes) rather than the original values. This pretext task provides the encoder with an inductive bias to capture the irregular dependencies, mapping from continuous inputs to discretized bins, and mitigates the feature heterogeneity by setting all features to have category-type targets. Our empirical investigations ascertain several advantages of binning: capturing the irregular function, compatibility with encoder architecture and additional modifications, standardizing all features into equal sets, grouping similar values within a feature, and providing ordering information. Comprehensive evaluations across diverse tabular datasets corroborate that our method consistently improves tabular representation learning performance for a wide range of downstream tasks. The codes are available in https://github.com/kyungeun-lee/tabularbinning.
Abstract:Scaling laws have allowed Pre-trained Language Models (PLMs) into the field of causal reasoning. Causal reasoning of PLM relies solely on text-based descriptions, in contrast to causal discovery which aims to determine the causal relationships between variables utilizing data. Recently, there has been current research regarding a method that mimics causal discovery by aggregating the outcomes of repetitive causal reasoning, achieved through specifically designed prompts. It highlights the usefulness of PLMs in discovering cause and effect, which is often limited by a lack of data, especially when dealing with multiple variables. Conversely, the characteristics of PLMs which are that PLMs do not analyze data and they are highly dependent on prompt design leads to a crucial limitation for directly using PLMs in causal discovery. Accordingly, PLM-based causal reasoning deeply depends on the prompt design and carries out the risk of overconfidence and false predictions in determining causal relationships. In this paper, we empirically demonstrate the aforementioned limitations of PLM-based causal reasoning through experiments on physics-inspired synthetic data. Then, we propose a new framework that integrates prior knowledge obtained from PLM with a causal discovery algorithm. This is accomplished by initializing an adjacency matrix for causal discovery and incorporating regularization using prior knowledge. Our proposed framework not only demonstrates improved performance through the integration of PLM and causal discovery but also suggests how to leverage PLM-extracted prior knowledge with existing causal discovery algorithms.
Abstract:Transfer learning is a crucial technique for handling a small amount of data that is potentially related to other abundant data. However, most of the existing methods are focused on classification tasks using images and language datasets. Therefore, in order to expand the transfer learning scheme to regression tasks, we propose a novel transfer technique based on differential geometry, namely the Geometrically Aligned Transfer Encoder (GATE). In this method, we interpret the latent vectors from the model to exist on a Riemannian curved manifold. We find a proper diffeomorphism between pairs of tasks to ensure that every arbitrary point maps to a locally flat coordinate in the overlapping region, allowing the transfer of knowledge from the source to the target data. This also serves as an effective regularizer for the model to behave in extrapolation regions. In this article, we demonstrate that GATE outperforms conventional methods and exhibits stable behavior in both the latent space and extrapolation regions for various molecular graph datasets.
Abstract:Recent regulation on right-to-be-forgotten emerges tons of interest in unlearning pre-trained machine learning models. While approximating a straightforward yet expensive approach of retrain-from-scratch, recent machine unlearning methods unlearn a sample by updating weights to remove its influence on the weight parameters. In this paper, we introduce a simple yet effective approach to remove a data influence on the deep generative model. Inspired by works in multi-task learning, we propose to manipulate gradients to regularize the interplay of influence among samples by projecting gradients onto the normal plane of the gradients to be retained. Our work is agnostic to statistics of the removal samples, outperforming existing baselines while providing theoretical analysis for the first time in unlearning a generative model.