Chinese stand-up comedy generation goes beyond plain text generation, requiring culturally grounded humor, precise timing, stage-performance cues, and implicit multi-step reasoning. Moreover, commonly used Chinese humor datasets are often better suited for humor understanding and evaluation than for long-form stand-up generation, making direct supervision misaligned with the target task. To address these challenges, we present OpenMic, an end-to-end multi-agent system built on AutoGen that transforms a user-provided life topic into a 3-5 minute Chinese stand-up performance and further produces a narrated comedy video. OpenMic orchestrates multiple specialized agents in a multi-round iterative loop-planning to jointly optimize humor, timing, and performability. To mitigate the dataset-task mismatch, we augment generation with retrieval-augmented generation (RAG) for material grounding and idea expansion, and we fine-tune a dedicated JokeWriter to better internalize stand-up-specific setup-punchline structures and long-range callbacks.
As the volume of unstructured text continues to grow across domains, there is an urgent need for scalable methods that enable interpretable organization, summarization, and retrieval of information. This work presents a unified framework for interpretable topic modeling, zero-shot topic labeling, and topic-guided semantic retrieval over large agricultural text corpora. Leveraging BERTopic, we extract semantically coherent topics. Each topic is converted into a structured prompt, enabling a language model to generate meaningful topic labels and summaries in a zero-shot manner. Querying and document exploration are supported via dense embeddings and vector search, while a dedicated evaluation module assesses topical coherence and bias. This framework supports scalable and interpretable information access in specialized domains where labeled data is limited.
Retrieval-Augmented Generation for software engineering often relies on vector similarity search, which captures topical similarity but can fail on multi-hop architectural reasoning such as controller to service to repository chains, interface-driven wiring, and inheritance. This paper benchmarks three retrieval pipelines on Java codebases (Shopizer, with additional runs on ThingsBoard and OpenMRS Core): (A) vector-only No-Graph RAG, (B) an LLM-generated knowledge graph RAG (LLM-KB), and (C) a deterministic AST-derived knowledge graph RAG (DKB) built with Tree-sitter and bidirectional traversal. Using 15 architecture and code-tracing queries per repository, we measure indexing time, query latency, corpus coverage, cost, and answer correctness. DKB builds its graph in seconds, while LLM-KB requires much longer graph generation. LLM-KB also shows indexing incompleteness: on Shopizer, 377 files are skipped or missed, reducing embedded chunk coverage and graph size compared to DKB. End-to-end cost is modest for DKB relative to the vector-only baseline but much higher for LLM-KB, especially as repository scale increases. Query latency is similar for No-Graph and DKB, while LLM-KB is slower and more variable. On the Shopizer question suite, DKB achieves the highest correctness, LLM-KB is close behind, and the vector-only baseline performs worst on upstream architectural queries and has the highest hallucination risk. Overall, deterministic AST-derived graphs provide more reliable coverage and multi-hop grounding than LLM-extracted graphs at substantially lower indexing cost.
Warning: This paper consists of examples representing regional biases in Indian regions that might be offensive towards a particular region. While social biases corresponding to gender, race, socio-economic conditions, etc., have been extensively studied in the major applications of Natural Language Processing (NLP), biases corresponding to regions have garnered less attention. This is mainly because of (i) difficulty in the extraction of regional bias datasets, (ii) disagreements in annotation due to inherent human biases, and (iii) regional biases being studied in combination with other types of social biases and often being under-represented. This paper focuses on creating a dataset IndRegBias, consisting of regional biases in an Indian context reflected in users' comments on popular social media platforms, namely Reddit and YouTube. We carefully selected 25,000 comments appearing on various threads in Reddit and videos on YouTube discussing trending topics on regional issues in India. Furthermore, we propose a multilevel annotation strategy to annotate the comments describing the severity of regional biased statements. To detect the presence of regional bias and its severity in IndRegBias, we evaluate open-source Large Language Models (LLMs) and Indic Language Models (ILMs) using zero-shot, few-shot, and fine-tuning strategies. We observe that zero-shot and few-shot approaches show lower accuracy in detecting regional biases and severity in the majority of the LLMs and ILMs. However, the fine-tuning approach significantly enhances the performance of the LLM in detecting Indian regional bias along with its severity.
Language models now provide an interface to express and often solve general problems in natural language, yet their ultimate computational capabilities remain a major topic of scientific debate. Unlike a formal computer, a language model is trained to autoregressively predict successive elements in human-generated text. We prove that chaining a language model's autoregressive output is sufficient to perform universal computation. That is, a language model can simulate the execution of any algorithm on any input. The challenge of eliciting desired computational behaviour can thus be reframed in terms of programmability: the ease of finding a suitable prompt. Strikingly, we demonstrate that even randomly initialized language models are capable of universal computation before training. This implies that training does not give rise to computational expressiveness -- rather, it improves programmability, enabling a natural language interface for accessing these intrinsic capabilities.
Large Language Models (LLMs) often exhibit increased response latency and degraded answer quality as dialogue length grows, making effective context management essential. However, existing methods rely on extra LLM calls to build memory or perform offline memory construction without considering the current user utterance, which can introduce inefficiencies or disrupt conversational continuity. We introduce DyCP, a lightweight context management method that dynamically segment and retrieve relevant memory at query time. It preserves the sequential structure of dialogue without predefined topic boundaries and supports efficient, adaptive context retrieval. Across three long-form dialogue benchmarks, LoCoMo, MT-Bench+, and SCM4LLMs, and multiple LLMs, DyCP consistently improves answer quality while reducing response latency. We also examine the gap between modern LLMs' expanded context windows and their actual long-context processing capacity, highlighting the continued importance of effective context management.
Automatic License Plate Recognition is a frequent research topic due to its wide-ranging practical applications. While recent studies use synthetic images to improve License Plate Recognition (LPR) results, there remain several limitations in these efforts. This work addresses these constraints by comprehensively exploring the integration of real and synthetic data to enhance LPR performance. We subject 16 Optical Character Recognition (OCR) models to a benchmarking process involving 12 public datasets acquired from various regions. Several key findings emerge from our investigation. Primarily, the massive incorporation of synthetic data substantially boosts model performance in both intra- and cross-dataset scenarios. We examine three distinct methodologies for generating synthetic data: template-based generation, character permutation, and utilizing a Generative Adversarial Network (GAN) model, each contributing significantly to performance enhancement. The combined use of these methodologies demonstrates a notable synergistic effect, leading to end-to-end results that surpass those reached by state-of-the-art methods and established commercial systems. Our experiments also underscore the efficacy of synthetic data in mitigating challenges posed by limited training data, enabling remarkable results to be achieved even with small fractions of the original training data. Finally, we investigate the trade-off between accuracy and speed among different models, identifying those that strike the optimal balance in each intra-dataset and cross-dataset settings.
Short descriptions are a key part of the Wikipedia user experience, but their coverage remains uneven across languages and topics. In previous work, we introduced Descartes, a multilingual model for generating short descriptions. In this report, we present the results of a pilot deployment of Descartes in the Wikipedia Android app, where editors were offered suggestions based on outputs from Descartes while editing short descriptions. The experiment spanned 12 languages, with over 3,900 articles and 375 editors participating. Overall, 90% of accepted Descartes descriptions were rated at least 3 out of 5 in quality, and their average ratings were comparable to human-written ones. Editors adopted machine suggestions both directly and with modifications, while the rate of reverts and reports remained low. The pilot also revealed practical considerations for deployment, including latency, language-specific gaps, and the need for safeguards around sensitive topics. These results indicate that Descartes's short descriptions can support editors in reducing content gaps, provided that technical, design, and community guardrails are in place.
Argumentation generation has attracted substantial research interest due to its central role in human reasoning and decision-making. However, most existing argumentative corpora focus on non-interactive, single-turn settings, either generating arguments from a given topic or refuting an existing argument. In practice, however, argumentation is often realized as multi-turn dialogue, where speakers defend their stances and employ diverse argumentative strategies to strengthen persuasiveness. To support deeper modeling of argumentation dialogue, we present the first large-scale \textbf{S}trategic \textbf{A}rgumentative \textbf{D}ialogue dataset, SAD, consisting of 392,822 examples. Grounded in argumentation theories, we annotate each utterance with five strategy types, allowing multiple strategies per utterance. Unlike prior datasets, SAD requires models to generate contextually appropriate arguments conditioned on the dialogue history, a specified stance on the topic, and targeted argumentation strategies. We further benchmark a range of pretrained generative models on SAD and present in-depth analysis of strategy usage patterns in argumentation.
Intelligent interfaces increasingly use large language models to summarize user-generated content, yet these summaries emphasize what is mentioned while overlooking what is missing. This presence bias can mislead users who rely on summaries to make decisions. We present Domain Informed Summarization through Contrast (DiSCo), an expectation-based computational approach that makes absences visible by comparing each entity's content with domain topical expectations captured in reference distributions of aspects typically discussed in comparable accommodations. This comparison identifies aspects that are either unusually emphasized or missing relative to domain norms and integrates them into the generated text. In a user study across three accommodation domains, namely ski, beach, and city center, DiSCo summaries were rated as more detailed and useful for decision making than baseline large language model summaries, although slightly harder to read. The findings show that modeling expectations reduces presence bias and improves both transparency and decision support in intelligent summarization interfaces.