Social scientists employ latent Dirichlet allocation (LDA) to find highly specific topics in large corpora, but they often struggle in this task because (1) LDA, in general, takes a significant amount of time to fit on large corpora; (2) unsupervised LDA fragments topics into sub-topics in short documents; (3) semi-supervised LDA fails to identify specific topics defined using seed words. To solve these problems, I have developed a new topic model called distributed asymmetric allocation (DAA) that integrates multiple algorithms for efficiently identifying sentences about important topics in large corpora. I evaluate the ability of DAA to identify politically important topics by fitting it to the transcripts of speeches at the United Nations General Assembly between 1991 and 2017. The results show that DAA can classify sentences significantly more accurately and quickly than LDA thanks to the new algorithms. More generally, the results demonstrate that it is important for social scientists to optimize Dirichlet priors of LDA to perform content analysis accurately.
Nowadays, Graph Fraud Detection (GFD) in financial scenarios has become an urgent research topic to protect online payment security. However, as organized crime groups are becoming more professional in real-world scenarios, fraudsters are employing more sophisticated camouflage strategies. Specifically, fraudsters disguise themselves by mimicking the behavioral data collected by platforms, ensuring that their key characteristics are consistent with those of benign users to a high degree, which we call Adaptive Camouflage. Consequently, this narrows the differences in behavioral traits between them and benign users within the platform's database, thereby making current GFD models lose efficiency. To address this problem, we propose a relation diffusion-based graph augmentation model Grad. In detail, Grad leverages a supervised graph contrastive learning module to enhance the fraud-benign difference and employs a guided relation diffusion generator to generate auxiliary homophilic relations from scratch. Based on these, weak fraudulent signals would be enhanced during the aggregation process, thus being obvious enough to be captured. Extensive experiments have been conducted on two real-world datasets provided by WeChat Pay, one of the largest online payment platforms with billions of users, and three public datasets. The results show that our proposed model Grad outperforms SOTA methods in both various scenarios, achieving at most 11.10% and 43.95% increases in AUC and AP, respectively. Our code is released at https://github.com/AI4Risk/antifraud and https://github.com/Muyiiiii/WWW25-Grad.
Streaming Speech-to-Text Translation (StreamST) requires producing translations concurrently with incoming speech, imposing strict latency constraints and demanding models that balance partial-information decision-making with high translation quality. Research efforts on the topic have so far relied on the SimulEval repository, which is no longer maintained and does not support systems that revise their outputs. In addition, it has been designed for simulating the processing of short segments, rather than long-form audio streams, and it does not provide an easy method to showcase systems in a demo. As a solution, we introduce simulstream, the first open-source framework dedicated to unified evaluation and demonstration of StreamST systems. Designed for long-form speech processing, it supports not only incremental decoding approaches, but also re-translation methods, enabling for their comparison within the same framework both in terms of quality and latency. In addition, it also offers an interactive web interface to demo any system built within the tool.
Public debates surrounding infrastructure and energy projects involve complex networks of stakeholders, arguments, and evolving narratives. Understanding these dynamics is crucial for anticipating controversies and informing engagement strategies, yet existing tools in media intelligence largely rely on descriptive analytics with limited transparency. This paper presents Stakeholder Suite, a framework deployed in operational contexts for mapping actors, topics, and arguments within public debates. The system combines actor detection, topic modeling, argument extraction and stance classification in a unified pipeline. Tested on multiple energy infrastructure projects as a case study, the approach delivers fine-grained, source-grounded insights while remaining adaptable to diverse domains. The framework achieves strong retrieval precision and stance accuracy, producing arguments judged relevant in 75% of pilot use cases. Beyond quantitative metrics, the tool has proven effective for operational use: helping project teams visualize networks of influence, identify emerging controversies, and support evidence-based decision-making.
Query Expansion (QE) enriches queries and Document Expansion (DE) enriches documents, and these two techniques are often applied separately. However, such separate application may lead to semantic misalignment between the expanded queries (or documents) and their relevant documents (or queries). To address this serious issue, we propose TCDE, a dual expansion strategy that leverages large language models (LLMs) for topic-centric enrichment on both queries and documents. In TCDE, we design two distinct prompt templates for processing each query and document. On the query side, an LLM is guided to identify distinct sub-topics within each query and generate a focused pseudo-document for each sub-topic. On the document side, an LLM is guided to distill each document into a set of core topic sentences. The resulting outputs are used to expand the original query and document. This topic-centric dual expansion process establishes semantic bridges between queries and their relevant documents, enabling better alignment for downstream retrieval models. Experiments on two challenging benchmarks, TREC Deep Learning and BEIR, demonstrate that TCDE achieves substantial improvements over strong state-of-the-art expansion baselines. In particular, on dense retrieval tasks, it outperforms several state-of-the-art methods, with a relative improvement of 2.8\% in NDCG@10 on the SciFact dataset. Experimental results validate the effectiveness of our topic-centric and dual expansion strategy.
AI technologies have rapidly moved into business and research applications that involve large text corpora, including computational journalism research and newsroom settings. These models, trained on extant data from various sources, can be conceptualized as historical artifacts that encode decades-old attitudes and stereotypes. This paper investigates one such example trained on the broadly-used New York Times Annotated Corpus to create a multi-label classifier. Our use in research settings surfaced the concerning "blacks" thematic topic label. Through quantitative and qualitative means we investigate this label's use in the training corpus, what concepts it might be encoding in the trained classifier, and how those concepts impact our model use. Via the application of explainable AI methods, we find that the "blacks" label operates partially as a general "racism detector" across some minoritized groups. However, it performs poorly against expectations on modern examples such as COVID-19 era anti-Asian hate stories, and reporting on the Black Lives Matter movement. This case study of interrogating embedded biases in a model reveals how similar applications in newsroom settings can lead to unexpected outputs that could impact a wide variety of potential uses of any large language model-story discovery, audience targeting, summarization, etc. The fundamental tension this exposes for newsrooms is how to adopt AI-enabled workflow tools while reducing the risk of reproducing historical biases in news coverage.
This research presents the implementation of a Sharia-compliant chatbot as an interactive medium for consulting Islamic questions, leveraging Reinforcement Learning (Q-Learning) integrated with Sentence-Transformers for semantic embedding to ensure contextual and accurate responses. Utilizing the CRISP-DM methodology, the system processes a curated Islam QA dataset of 25,000 question-answer pairs from authentic sources like the Qur'an, Hadith, and scholarly fatwas, formatted in JSON for flexibility and scalability. The chatbot prototype, developed with a Flask API backend and Flutter-based mobile frontend, achieves 87% semantic accuracy in functional testing across diverse topics including fiqh, aqidah, ibadah, and muamalah, demonstrating its potential to enhance religious literacy, digital da'wah, and access to verified Islamic knowledge in the Industry 4.0 era. While effective for closed-domain queries, limitations such as static learning and dataset dependency highlight opportunities for future enhancements like continuous adaptation and multi-turn conversation support, positioning this innovation as a bridge between traditional Islamic scholarship and modern AI-driven consultation.
We introduce Refusal Steering, an inference-time method to exercise fine-grained control over Large Language Models refusal behaviour on politically sensitive topics without retraining. We replace fragile pattern-based refusal detection with an LLM-as-a-judge that assigns refusal confidence scores and we propose a ridge-regularized variant to compute steering vectors that better isolate the refusal--compliance direction. On Qwen3-Next-80B-A3B-Thinking, our method removes the refusal behaviour of the model around politically sensitive topics while maintaining safety on JailbreakBench and near-baseline performance on general benchmarks. The approach generalizes across 4B and 80B models and can also induce targeted refusals when desired. We analize the steering vectors and show that refusal signals concentrate in deeper layers of the transformer and are distributed across many dimensions. Together, these results demonstrate that activation steering can remove political refusal behaviour while retaining safety alignment for harmful content, offering a practical path to controllable, transparent moderation at inference time.
Forensic scientists often need to identify an unknown speaker or writer in cases such as ransom calls, covert recordings, alleged suicide notes, or anonymous online communications, among many others. Speaker recognition in the speech domain usually examines phonetic or acoustic properties of a voice, and these methods can be accurate and robust under certain conditions. However, if a speaker disguises their voice or employs text-to-speech software, vocal properties may no longer be reliable, leaving only their linguistic content available for analysis. Authorship attribution methods traditionally use syntactic, semantic, and related linguistic information to identify writers of written text (authorship attribution). In this paper, we apply a content-based authorship approach to speech that has been transcribed into text, using what a speaker says to attribute speech to individuals (speaker attribution). We introduce a stylometric method, StyloSpeaker, which incorporates character, word, token, sentence, and style features from the stylometric literature on authorship, to assess whether two transcripts were produced by the same speaker. We evaluate this method on two types of transcript formatting: one approximating prescriptive written text with capitalization and punctuation and another normalized style that removes these conventions. The transcripts' conversation topics are also controlled to varying degrees. We find generally higher attribution performance on normalized transcripts, except under the strongest topic control condition, in which overall performance is highest. Finally, we compare this more explainable stylometric model to black-box neural approaches on the same data and investigate which stylistic features most effectively distinguish speakers.
Social bots are now deeply embedded in online platforms for promotion, persuasion, and manipulation. Most bot-detection systems still treat behavioural features as static, implicitly assuming bots behave stationarily over time. We test that assumption for promotional Twitter bots, analysing change in both individual behavioural signals and the relationships between them. Using 2,615 promotional bot accounts and 2.8M tweets, we build yearly time series for ten content-based meta-features. Augmented Dickey-Fuller and KPSS tests plus linear trends show all ten are non-stationary: nine increase over time, while language diversity declines slightly. Stratifying by activation generation and account age reveals systematic differences: second-generation bots are most active and link-heavy; short-lived bots show intense, repetitive activity with heavy hashtag/URL use; long-lived bots are less active but more linguistically diverse and use emojis more variably. We then analyse co-occurrence across generations using 18 interpretable binary features spanning actions, topic similarity, URLs, hashtags, sentiment, emojis, and media (153 pairs). Chi-square tests indicate almost all pairs are dependent. Spearman correlations shift in strength and sometimes polarity: many links (e.g. multiple hashtags with media; sentiment with URLs) strengthen, while others flip from weakly positive to weakly or moderately negative. Later generations show more structured combinations of cues. Taken together, these studies provide evidence that promotional social bots adapt over time at both the level of individual meta-features and the level of feature interdependencies, with direct implications for the design and evaluation of bot-detection systems trained on historical behavioural features.