Topic:Aspect Based Sentiment Analysis
What is Aspect Based Sentiment Analysis? Aspect Based Sentiment Analysis (ABSA) is a Natural Language Processing task that aims to identify and extract the sentiment of specific aspects or components of a product or service. ABSA typically involves a multi-step process that begins with identifying the aspects or features of the product or service that are being discussed in the text. This is followed by sentiment analysis, where the sentiment polarity (positive, negative, or neutral) is assigned to each aspect based on the context of the sentence or document. Finally, the results are aggregated to provide an overall sentiment for each aspect.
Papers and Code
Jan 27, 2025
Abstract:Aspect-based sentiment analysis (ABSA) aims to identify four sentiment elements, including aspect term, aspect category, opinion term, and sentiment polarity. These elements construct the complete picture of sentiments. The most challenging task, aspect sentiment quad prediction (ASQP), predicts these elements simultaneously, hindered by difficulties in accurately coupling different sentiment elements. A key challenge is insufficient annotated data that limits the capability of models in semantic understanding and reasoning about quad prediction. To address this, we propose stepwise task augmentation and relation learning (STAR), a strategy inspired by human reasoning. STAR constructs auxiliary data to learn quadruple relationships incrementally by augmenting with pairwise and overall relation tasks derived from training data. By encouraging the model to infer causal relationships among sentiment elements without requiring additional annotations, STAR effectively enhances quad prediction. Extensive experiments demonstrate the proposed STAR exhibits superior performance on four benchmark datasets.
* 8 pages, 2 figures, and 4 tables
Via

Feb 26, 2025
Abstract:Multi-brand analysis based on review comments and ratings is a commonly used strategy to compare different brands in marketing. It can help consumers make more informed decisions and help marketers understand their brand's position in the market. In this work, we propose a multifacet hierarchical sentiment-topic model (MH-STM) to detect brand-associated sentiment polarities towards multiple comparative aspects from online customer reviews. The proposed method is built on a unified generative framework that explains review words with a hierarchical brand-associated topic model and the overall polarity score with a regression model on the empirical topic distribution. Moreover, a novel hierarchical Polya urn (HPU) scheme is proposed to enhance the topic-word association among topic hierarchy, such that the general topics shared by all brands are separated effectively from the unique topics specific to individual brands. The performance of the proposed method is evaluated on both synthetic data and two real-world review corpora. Experimental studies demonstrate that the proposed method can be effective in detecting reasonable topic hierarchy and deriving accurate brand-associated rankings on multi-aspects.
* 21 pages, 6 figures, 4 tables
Via

Jan 15, 2025
Abstract:Aspect-based sentiment analysis (ASBA) is a refined approach to sentiment analysis that aims to extract and classify sentiments based on specific aspects or features of a product, service, or entity. Unlike traditional sentiment analysis, which assigns a general sentiment score to entire reviews or texts, ABSA focuses on breaking down the text into individual components or aspects (e.g., quality, price, service) and evaluating the sentiment towards each. This allows for a more granular level of understanding of customer opinions, enabling businesses to pinpoint specific areas of strength and improvement. The process involves several key steps, including aspect extraction, sentiment classification, and aspect-level sentiment aggregation for a review paragraph or any other form that the users have provided. ABSA has significant applications in areas such as product reviews, social media monitoring, customer feedback analysis, and market research. By leveraging techniques from natural language processing (NLP) and machine learning, ABSA facilitates the extraction of valuable insights, enabling companies to make data-driven decisions that enhance customer satisfaction and optimize offerings. As ABSA evolves, it holds the potential to greatly improve personalized customer experiences by providing a deeper understanding of sentiment across various product aspects. In this work, we have analyzed the strength of LLMs for a complete cross-domain aspect-based sentiment analysis with the aim of defining the framework for certain products and using it for other similar situations. We argue that it is possible to that at an effectiveness of 92\% accuracy for the Aspect Based Sentiment Analysis dataset of SemEval-2015 Task 12.
Via

Feb 20, 2025
Abstract:The widespread dissemination of rumors on social media has a significant impact on people's lives, potentially leading to public panic and fear. Rumors often evoke specific sentiments, resonating with readers and prompting sharing. To effectively detect and track rumors, it is essential to observe the fine-grained sentiments of both source and response message pairs as the rumor evolves over time. However, current rumor detection methods fail to account for this aspect. In this paper, we propose MSuf, the first multi-task suffix learning framework for rumor detection and tracking using time series dual (coupled) sentiments. MSuf includes three modules: (1) an LLM to extract sentiment intensity features and sort them chronologically; (2) a module that fuses the sorted sentiment features with their source text word embeddings to obtain an aligned embedding; (3) two hard prompts are combined with the aligned vector to perform rumor detection and sentiment analysis using one frozen LLM. MSuf effectively enhances the performance of LLMs for rumor detection with only minimal parameter fine-tuning. Evaluating MSuf on four rumor detection benchmarks, we find significant improvements compared to other emotion-based methods.
* work in progress
Via

Dec 17, 2024
Abstract:Aspect-based sentiment analysis (ABSA), a sequence labeling task, has attracted increasing attention in multilingual contexts. While previous research has focused largely on fine-tuning or training models specifically for ABSA, we evaluate large language models (LLMs) under zero-shot conditions to explore their potential to tackle this challenge with minimal task-specific adaptation. We conduct a comprehensive empirical evaluation of a series of LLMs on multilingual ABSA tasks, investigating various prompting strategies, including vanilla zero-shot, chain-of-thought (CoT), self-improvement, self-debate, and self-consistency, across nine different models. Results indicate that while LLMs show promise in handling multilingual ABSA, they generally fall short of fine-tuned, task-specific models. Notably, simpler zero-shot prompts often outperform more complex strategies, especially in high-resource languages like English. These findings underscore the need for further refinement of LLM-based approaches to effectively address ABSA task across diverse languages.
Via

Dec 19, 2024
Abstract:Recently developed large language models (LLMs) have presented promising new avenues to address data scarcity in low-resource scenarios. In few-shot aspect-based sentiment analysis (ABSA), previous efforts have explored data augmentation techniques, which prompt LLMs to generate new samples by modifying existing ones. However, these methods fail to produce adequately diverse data, impairing their effectiveness. Besides, some studies apply in-context learning for ABSA by using specific instructions and a few selected examples as prompts. Though promising, LLMs often yield labels that deviate from task requirements. To overcome these limitations, we propose DS$^2$-ABSA, a dual-stream data synthesis framework targeted for few-shot ABSA. It leverages LLMs to synthesize data from two complementary perspectives: \textit{key-point-driven} and \textit{instance-driven}, which effectively generate diverse and high-quality ABSA samples in low-resource settings. Furthermore, a \textit{label refinement} module is integrated to improve the synthetic labels. Extensive experiments demonstrate that DS$^2$-ABSA significantly outperforms previous few-shot ABSA solutions and other LLM-oriented data generation methods.
Via

Dec 11, 2024
Abstract:Multimodal Aspect-Based Sentiment Analysis (MABSA) combines text and images to perform sentiment analysis but often struggles with irrelevant or misleading visual information. Existing methodologies typically address either sentence-image denoising or aspect-image denoising but fail to comprehensively tackle both types of noise. To address these limitations, we propose DualDe, a novel approach comprising two distinct components: the Hybrid Curriculum Denoising Module (HCD) and the Aspect-Enhance Denoising Module (AED). The HCD module enhances sentence-image denoising by incorporating a flexible curriculum learning strategy that prioritizes training on clean data. Concurrently, the AED module mitigates aspect-image noise through an aspect-guided attention mechanism that filters out noisy visual regions which unrelated to the specific aspects of interest. Our approach demonstrates effectiveness in addressing both sentence-image and aspect-image noise, as evidenced by experimental evaluations on benchmark datasets.
* Accepted at PACLIC 2024
Via

Dec 02, 2024
Abstract:As a fine-grained task, multimodal aspect-based sentiment analysis (MABSA) mainly focuses on identifying aspect-level sentiment information in the text-image pair. However, we observe that it is difficult to recognize the sentiment of aspects in low-quality samples, such as those with low-resolution images that tend to contain noise. And in the real world, the quality of data usually varies for different samples, such noise is called data uncertainty. But previous works for the MABSA task treat different quality samples with the same importance and ignored the influence of data uncertainty. In this paper, we propose a novel data uncertainty-aware multimodal aspect-based sentiment analysis approach, UA-MABSA, which weighted the loss of different samples by the data quality and difficulty. UA-MABSA adopts a novel quality assessment strategy that takes into account both the image quality and the aspect-based cross-modal relevance, thus enabling the model to pay more attention to high-quality and challenging samples. Extensive experiments show that our method achieves state-of-the-art (SOTA) performance on the Twitter-2015 dataset. Further analysis demonstrates the effectiveness of the quality assessment strategy.
Via

Dec 01, 2024
Abstract:Recently, generative pre-training based models have demonstrated remarkable results on Aspect-based Sentiment Analysis (ABSA) task. However, previous works overemphasize crafting various templates to paraphrase training targets for enhanced decoding, ignoring the internal optimizations on generative models. Despite notable results achieved by these target-oriented optimization methods, they struggle with the complicated long texts since the implicit long-distance relation, e.g., aspect-opinion relation, is difficult to extract under the position embedding mechanism in generative models. Thus, in this paper, we first clarify the causes of the problem and introduce two sequence optimization strategies: the rule-based static optimization and the score-based dynamic optimization. The rule-based approach relies on handcraft priority of dependency relation to reorder the context, while the score-based algorithm dynamically regulates the contextual sequence by calculating word position scores using neural network. Based on the dynamic optimization structure, we further propose a unified Prompt-based Generative Sequence Optimization network (named PGSO), which jointly optimizes the training target as well as the generative model. Specifically, PGSO contains two components, namely, prompt construction and sequence regulator. The former constructs a task-specific prompt based on unsupervised training objects to fully utilize the pre-trained model. The latter jointly leverages semantic, syntactic and original-sequence information to dynamically regulate contextual sequence. Our experiments conducted on four ABSA tasks across multiple benchmarks indicate that PGSO outperforms state-of-the-art methods, with an average improvement of 3.52% in F1 score.
Via

Oct 18, 2024
Abstract:With the rapid development of the internet, the richness of User-Generated Contentcontinues to increase, making Multimodal Aspect-Based Sentiment Analysis (MABSA) a research hotspot. Existing studies have achieved certain results in MABSA, but they have not effectively addressed the analytical challenges in scenarios where multiple entities and sentiments coexist. This paper innovatively introduces Large Language Models (LLMs) for event decomposition and proposes a reinforcement learning framework for Multimodal Aspect-based Sentiment Analysis (MABSA-RL) framework. This framework decomposes the original text into a set of events using LLMs, reducing the complexity of analysis, introducing reinforcement learning to optimize model parameters. Experimental results show that MABSA-RL outperforms existing advanced methods on two benchmark datasets. This paper provides a new research perspective and method for multimodal aspect-level sentiment analysis.
Via
