Abstract:Large language models and vision-language models (which we jointly call LMs) have transformed NLP and CV, demonstrating remarkable potential across various fields. However, their capabilities in affective analysis (i.e. sentiment analysis and emotion detection) remain underexplored. This gap is largely due to the absence of comprehensive evaluation benchmarks, and the inherent complexity of affective analysis tasks. In this paper, we introduce MMAFFBen, the first extensive open-source benchmark for multilingual multimodal affective analysis. MMAFFBen encompasses text, image, and video modalities across 35 languages, covering four key affective analysis tasks: sentiment polarity, sentiment intensity, emotion classification, and emotion intensity. Moreover, we construct the MMAFFIn dataset for fine-tuning LMs on affective analysis tasks, and further develop MMAFFLM-3b and MMAFFLM-7b based on it. We evaluate various representative LMs, including GPT-4o-mini, providing a systematic comparison of their affective understanding capabilities. This project is available at https://github.com/lzw108/MMAFFBen.
Abstract:Although multimodal large language models (MLLMs) have achieved impressive performance, the multimodal instruction tuning stage often causes catastrophic forgetting of the base LLM's language ability, even in strong models like Llama3. To address this, we propose Locate-then-Merge, a training-free parameter fusion framework that first locates important parameters and then selectively merges them. We further introduce Neuron-Fusion, a neuron-level strategy that preserves the influence of neurons with large parameter shifts--neurons likely responsible for newly acquired visual capabilities--while attenuating the influence of neurons with smaller changes that likely encode general-purpose language skills. This design enables better retention of visual adaptation while mitigating language degradation. Experiments on 13 benchmarks across both language and visual tasks show that Neuron-Fusion consistently outperforms existing model merging methods. Further analysis reveals that our method effectively reduces context hallucination in generation.
Abstract:Despite the many benefits of large language models (LLMs), they can also cause harm, e.g., through automatic generation of misinformation, including conspiracy theories. Moreover, LLMs can also ''disguise'' conspiracy theories by altering characteristic textual features, e.g., by transforming their typically strong negative emotions into a more positive tone. Although several studies have proposed automated conspiracy theory detection methods, they are usually trained using human-authored text, whose features can vary from LLM-generated text. Furthermore, several conspiracy detection models, including the previously proposed ConspEmoLLM, rely heavily on the typical emotional features of human-authored conspiracy content. As such, intentionally disguised content may evade detection. To combat such issues, we firstly developed an augmented version of the ConDID conspiracy detection dataset, ConDID-v2, which supplements human-authored conspiracy tweets with versions rewritten by an LLM to reduce the negativity of their original sentiment. The quality of the rewritten tweets was verified by combining human and LLM-based assessment. We subsequently used ConDID-v2 to train ConspEmoLLM-v2, an enhanced version of ConspEmoLLM. Experimental results demonstrate that ConspEmoLLM-v2 retains or exceeds the performance of ConspEmoLLM on the original human-authored content in ConDID, and considerably outperforms both ConspEmoLLM and several other baselines when applied to sentiment-transformed tweets in ConDID-v2. The project will be available at https://github.com/lzw108/ConspEmoLLM.
Abstract:Current research on bias in language models (LMs) predominantly focuses on data quality, with significantly less attention paid to model architecture and temporal influences of data. Even more critically, few studies systematically investigate the origins of bias. We propose a methodology grounded in comparative behavioral theory to interpret the complex interaction between training data and model architecture in bias propagation during language modeling. Building on recent work that relates transformers to n-gram LMs, we evaluate how data, model design choices, and temporal dynamics affect bias propagation. Our findings reveal that: (1) n-gram LMs are highly sensitive to context window size in bias propagation, while transformers demonstrate architectural robustness; (2) the temporal provenance of training data significantly affects bias; and (3) different model architectures respond differentially to controlled bias injection, with certain biases (e.g. sexual orientation) being disproportionately amplified. As language models become ubiquitous, our findings highlight the need for a holistic approach -- tracing bias to its origins across both data and model dimensions, not just symptoms, to mitigate harm.
Abstract:Audio Large Language Models (AudioLLMs) have received widespread attention and have significantly improved performance on audio tasks such as conversation, audio understanding, and automatic speech recognition (ASR). Despite these advancements, there is an absence of a benchmark for assessing AudioLLMs in financial scenarios, where audio data, such as earnings conference calls and CEO speeches, are crucial resources for financial analysis and investment decisions. In this paper, we introduce \textsc{FinAudio}, the first benchmark designed to evaluate the capacity of AudioLLMs in the financial domain. We first define three tasks based on the unique characteristics of the financial domain: 1) ASR for short financial audio, 2) ASR for long financial audio, and 3) summarization of long financial audio. Then, we curate two short and two long audio datasets, respectively, and develop a novel dataset for financial audio summarization, comprising the \textsc{FinAudio} benchmark. Then, we evaluate seven prevalent AudioLLMs on \textsc{FinAudio}. Our evaluation reveals the limitations of existing AudioLLMs in the financial domain and offers insights for improving AudioLLMs. All datasets and codes will be released.
Abstract:User reviews on e-commerce platforms exhibit dynamic sentiment patterns driven by temporal and contextual factors. Traditional sentiment analysis methods focus on static reviews, failing to capture the evolving temporal relationship between user sentiment rating and textual content. Sentiment analysis on streaming reviews addresses this limitation by modeling and predicting the temporal evolution of user sentiments. However, it suffers from data sparsity, manifesting in temporal, spatial, and combined forms. In this paper, we introduce SynGraph, a novel framework designed to address data sparsity in sentiment analysis on streaming reviews. SynGraph alleviates data sparsity by categorizing users into mid-tail, long-tail, and extreme scenarios and incorporating LLM-augmented enhancements within a dynamic graph-based structure. Experiments on real-world datasets demonstrate its effectiveness in addressing sparsity and improving sentiment modeling in streaming reviews.
Abstract:Despite Greece's pivotal role in the global economy, large language models (LLMs) remain underexplored for Greek financial context due to the linguistic complexity of Greek and the scarcity of domain-specific datasets. Previous efforts in multilingual financial natural language processing (NLP) have exposed considerable performance disparities, yet no dedicated Greek financial benchmarks or Greek-specific financial LLMs have been developed until now. To bridge this gap, we introduce Plutus-ben, the first Greek Financial Evaluation Benchmark, and Plutus-8B, the pioneering Greek Financial LLM, fine-tuned with Greek domain-specific data. Plutus-ben addresses five core financial NLP tasks in Greek: numeric and textual named entity recognition, question answering, abstractive summarization, and topic classification, thereby facilitating systematic and reproducible LLM assessments. To underpin these tasks, we present three novel, high-quality Greek financial datasets, thoroughly annotated by expert native Greek speakers, augmented by two existing resources. Our comprehensive evaluation of 22 LLMs on Plutus-ben reveals that Greek financial NLP remains challenging due to linguistic complexity, domain-specific terminology, and financial reasoning gaps. These findings underscore the limitations of cross-lingual transfer, the necessity for financial expertise in Greek-trained models, and the challenges of adapting financial LLMs to Greek text. We release Plutus-ben, Plutus-8B, and all associated datasets publicly to promote reproducible research and advance Greek financial NLP, fostering broader multilingual inclusivity in finance.
Abstract:The stance detection task aims to categorise the stance regarding specified targets. Current methods face challenges in effectively integrating sentiment information for stance detection. Moreover, the role of highly granular sentiment labelling in stance detection has been largely overlooked. This study presents a novel stance detection framework utilizing a variational autoencoder (VAE) to disentangle latent emotional features-value, arousal, and dominance (VAD)-from political discourse on social media. This approach addresses limitations in current methods, particularly in in-target and cross-target stance detection scenarios. This research uses an advanced emotional annotation tool to annotate seven-class sentiment labels for P-STANCE. Evaluations on benchmark datasets, including P-STANCE and SemEval-2016, reveal that PoliStance-VAE achieves state-of-the-art performance, surpassing models like BERT, BERTweet, and GPT-4o. PoliStance-VAE offers a robust and interpretable solution for stance detection, demonstrating the effectiveness of integrating nuanced emotional representations. This framework paves the way for advancements in natural language processing tasks, particularly those requiring detailed emotional understanding.
Abstract:The widespread dissemination of rumors on social media has a significant impact on people's lives, potentially leading to public panic and fear. Rumors often evoke specific sentiments, resonating with readers and prompting sharing. To effectively detect and track rumors, it is essential to observe the fine-grained sentiments of both source and response message pairs as the rumor evolves over time. However, current rumor detection methods fail to account for this aspect. In this paper, we propose MSuf, the first multi-task suffix learning framework for rumor detection and tracking using time series dual (coupled) sentiments. MSuf includes three modules: (1) an LLM to extract sentiment intensity features and sort them chronologically; (2) a module that fuses the sorted sentiment features with their source text word embeddings to obtain an aligned embedding; (3) two hard prompts are combined with the aligned vector to perform rumor detection and sentiment analysis using one frozen LLM. MSuf effectively enhances the performance of LLMs for rumor detection with only minimal parameter fine-tuning. Evaluating MSuf on four rumor detection benchmarks, we find significant improvements compared to other emotion-based methods.
Abstract:Large language models (LLMs) fine-tuned on multimodal financial data have demonstrated impressive reasoning capabilities in various financial tasks. However, they often struggle with multi-step, goal-oriented scenarios in interactive financial markets, such as trading, where complex agentic approaches are required to improve decision-making. To address this, we propose \textsc{FLAG-Trader}, a unified architecture integrating linguistic processing (via LLMs) with gradient-driven reinforcement learning (RL) policy optimization, in which a partially fine-tuned LLM acts as the policy network, leveraging pre-trained knowledge while adapting to the financial domain through parameter-efficient fine-tuning. Through policy gradient optimization driven by trading rewards, our framework not only enhances LLM performance in trading but also improves results on other financial-domain tasks. We present extensive empirical evidence to validate these enhancements.