Abstract:Multivariate time series anomaly detection (MTSAD) aims to accurately identify and localize complex abnormal patterns in the large-scale industrial control systems. While existing approaches excel in recognizing the distinct patterns under the low-dimensional scenarios, they often fail to robustly capture long-range spatiotemporal dependencies when learning representations from the high-dimensional noisy time series. To address these limitations, we propose DARTs, a robust long short-term dual-path framework with window-aware spatiotemporal soft fusion mechanism, which can be primarily decomposed into three complementary components. Specifically, in the short-term path, we introduce a Multi-View Sparse Graph Learner and a Diffusion Multi-Relation Graph Unit that collaborate to adaptively capture hierarchical discriminative short-term spatiotemporal patterns in the high-noise time series. While in the long-term path, we design a Multi-Scale Spatiotemporal Graph Constructor to model salient long-term dynamics within the high-dimensional representation space. Finally, a window-aware spatiotemporal soft-fusion mechanism is introduced to filter the residual noise while seamlessly integrating anomalous patterns. Extensive qualitative and quantitative experimental results across mainstream datasets demonstrate the superiority and robustness of our proposed DARTs. A series of ablation studies are also conducted to explore the crucial design factors of our proposed components. Our code and model will be made publicly open soon.




Abstract:With the rapid development of the internet, the richness of User-Generated Contentcontinues to increase, making Multimodal Aspect-Based Sentiment Analysis (MABSA) a research hotspot. Existing studies have achieved certain results in MABSA, but they have not effectively addressed the analytical challenges in scenarios where multiple entities and sentiments coexist. This paper innovatively introduces Large Language Models (LLMs) for event decomposition and proposes a reinforcement learning framework for Multimodal Aspect-based Sentiment Analysis (MABSA-RL) framework. This framework decomposes the original text into a set of events using LLMs, reducing the complexity of analysis, introducing reinforcement learning to optimize model parameters. Experimental results show that MABSA-RL outperforms existing advanced methods on two benchmark datasets. This paper provides a new research perspective and method for multimodal aspect-level sentiment analysis.