Information extraction is the process of automatically extracting structured information from unstructured text data.
Malicious image manipulation threatens public safety and requires efficient localization methods. Existing approaches depend on costly pixel-level annotations which make training expensive. Existing weakly supervised methods rely only on image-level binary labels and focus on global classification, often overlooking local edge cues that are critical for precise localization. We observe that feature variations at manipulated boundaries are substantially larger than in interior regions. To address this gap, we propose Semantic-Agnostic Prompt Learning (SAPL) in CLIP, which learns text prompts that intentionally encode non-semantic, boundary-centric cues so that CLIPs multimodal similarity highlights manipulation edges rather than high-level object semantics. SAPL combines two complementary modules Edge-aware Contextual Prompt Learning (ECPL) and Hierarchical Edge Contrastive Learning (HECL) to exploit edge information in both textual and visual spaces. The proposed ECPL leverages edge-enhanced image features to generate learnable textual prompts via an attention mechanism, embedding semantic-irrelevant information into text features, to guide CLIP focusing on manipulation edges. The proposed HECL extract genuine and manipulated edge patches, and utilize contrastive learning to boost the discrimination between genuine edge patches and manipulated edge patches. Finally, we predict the manipulated regions from the similarity map after processing. Extensive experiments on multiple public benchmarks demonstrate that SAPL significantly outperforms existing approaches, achieving state-of-the-art localization performance.
Active Alignment (AA) is a key technology for the large-scale automated assembly of high-precision optical systems. Compared with labor-intensive per-model on-device calibration, a digital-twin pipeline built on optical simulation offers a substantial advantage in generating large-scale labeled data. However, complex imaging conditions induce a domain gap between simulation and real-world images, limiting the generalization of simulation-trained models. To address this, we propose augmenting a simulation baseline with minimal unlabeled real-world images captured at random misalignment positions, mitigating the gap from a domain adaptation perspective. We introduce Domain Adaptive Active Alignment (DA3), which utilizes an autoregressive domain transformation generator and an adversarial-based feature alignment strategy to distill real-world domain information via self-supervised learning. This enables the extraction of domain-invariant image degradation features to facilitate robust misalignment prediction. Experiments on two lens types reveal that DA3 improves accuracy by 46% over a purely simulation pipeline. Notably, it approaches the performance achieved with precisely labeled real-world data collected on 3 lens samples, while reducing on-device data collection time by 98.7%. The results demonstrate that domain adaptation effectively endows simulation-trained models with robust real-world performance, validating the digital-twin pipeline as a practical solution to significantly enhance the efficiency of large-scale optical assembly.
Efficient channel state information (CSI) feedback is critical for 6G extremely large-scale multiple-input multiple-output (XL-MIMO) systems to mitigate channel interference. However, the massive antenna scale imposes a severe burden on feedback overhead. Meanwhile, existing quantized feedback methods face dual challenges of limited quantization precision and insufficient channel robustness when compressing high-dimensional channel features into discrete symbols. To reduce these gaps, guided by the deep joint source-channel coding (DJSCC) framework, we propose a vector quantized (VQ)-aided scheme for CSI feedback in XL-MIMO systems considering the near-field effect, named VQ-DJSCC-F. Firstly, taking advantage of the sparsity of near-field channels in the polar-delay domain, we extract energy-concentrated features to reduce dimensionality. Then, we simultaneously design the Transformer and CNN (convolutional neural network) architectures as the backbones to hierarchically extract CSI features, followed by VQ modules projecting features into a discrete latent space. The entropy loss regularization in synergy with an exponential moving average (EMA) update strategy is introduced to maximize quantization precision. Furthermore, we develop an attention mechanism-driven channel adaptation module to mitigate the impact of wireless channel fading on the transmission of index sequences. Simulation results demonstrate that the proposed scheme achieves superior CSI reconstruction accuracy with lower feedback overheads under varying channel conditions.
We present AutoTour, a system that enhances user exploration by automatically generating fine-grained landmark annotations and descriptive narratives for photos captured by users. The key idea of AutoTour is to fuse visual features extracted from photos with nearby geospatial features queried from open matching databases. Unlike existing tour applications that rely on pre-defined content or proprietary datasets, AutoTour leverages open and extensible data sources to provide scalable and context-aware photo-based guidance. To achieve this, we design a training-free pipeline that first extracts and filters relevant geospatial features around the user's GPS location. It then detects major landmarks in user photos through VLM-based feature detection and projects them into the horizontal spatial plane. A geometric matching algorithm aligns photo features with corresponding geospatial entities based on their estimated distance and direction. The matched features are subsequently grounded and annotated directly on the original photo, accompanied by large language model-generated textual and audio descriptions to provide an informative, tour-like experience. We demonstrate that AutoTour can deliver rich, interpretable annotations for both iconic and lesser-known landmarks, enabling a new form of interactive, context-aware exploration that bridges visual perception and geospatial understanding.
Most users agree to online privacy policies without reading or understanding them, even though these documents govern how personal data is collected, shared, and monetized. Privacy policies are typically long, legally complex, and difficult for non-experts to interpret. This paper presents the Smart Privacy Policy Assistant, an LLM-powered system that automatically ingests privacy policies, extracts and categorizes key clauses, assigns human-interpretable risk levels, and generates clear, concise explanations. The system is designed for real-time use through browser extensions or mobile interfaces, surfacing contextual warnings before users disclose sensitive information or grant risky permissions. We describe the end-to-end pipeline, including policy ingestion, clause categorization, risk scoring, and explanation generation, and propose an evaluation framework based on clause-level accuracy, policy-level risk agreement, and user comprehension.
Stock market price prediction is a significant interdisciplinary research domain that depends at the intersection of finance, statistics, and economics. Forecasting Accurately predicting stock prices has always been a focal point for various researchers. However, existing statistical approaches for time-series prediction often fail to effectively forecast the probability range of future stock prices. Hence, to solve this problem, the Neural Prophet with a Deep Neural Network (NP-DNN) is proposed to predict stock market prices. The preprocessing technique used in this research is Z-score normalization, which normalizes stock price data by removing scale differences, making patterns easier to detect. Missing value imputation fills gaps in historical data, enhancing the models use of complete information for more accurate predictions. The Multi-Layer Perceptron (MLP) learns complex nonlinear relationships among stock market prices and extracts hidden patterns from the input data, thereby creating meaningful feature representations for better prediction accuracy. The proposed NP-DNN model achieved an accuracy of 99.21% compared with other approaches using the Fused Large Language Model. Keywords: deep neural network, forecasting stock prices, multi-layer perceptron, neural prophet, stock market price prediction.
Recent deepfake detection methods have increasingly explored frequency domain representations to reveal manipulation artifacts that are difficult to detect in the spatial domain. However, most existing approaches rely primarily on spectral magnitude, implicitly under exploring the role of phase information. In this work, we propose Phase4DFD, a phase aware frequency domain deepfake detection framework that explicitly models phase magnitude interactions via a learnable attention mechanism. Our approach augments standard RGB input with Fast Fourier Transform (FFT) magnitude and local binary pattern (LBP) representations to expose subtle synthesis artifacts that remain indistinguishable under spatial analysis alone. Crucially, we introduce an input level phase aware attention module that uses phase discontinuities commonly introduced by synthetic generation to guide the model toward frequency patterns that are most indicative of manipulation before backbone feature extraction. The attended multi domain representation is processed by an efficient BNext M backbone, with optional channel spatial attention applied for semantic feature refinement. Extensive experiments on the CIFAKE and DFFD datasets demonstrate that our proposed model Phase4DFD outperforms state of the art spatial and frequency-based detectors while maintaining low computational overhead. Comprehensive ablation studies further confirm that explicit phase modeling provides complementary and non-redundant information beyond magnitude-only frequency representations.
The Automatic Identification System provides critical information for maritime navigation and safety, yet its trajectories are often incomplete due to signal loss or deliberate tampering. Existing imputation methods emphasize trajectory recovery, paying limited attention to interpretability and failing to provide underlying knowledge that benefits downstream tasks such as anomaly detection and route planning. We propose knowledge-driven interpretable vessel trajectory imputation (VISTA), the first trajectory imputation framework that offers interpretability while simultaneously providing underlying knowledge to support downstream analysis. Specifically, we first define underlying knowledge as a combination of Structured Data-derived Knowledge (SDK) distilled from AIS data and Implicit LLM Knowledge acquired from large-scale Internet corpora. Second, to manage and leverage the SDK effectively at scale, we develop a data-knowledge-data loop that employs a Structured Data-derived Knowledge Graph for SDK extraction and knowledge-driven trajectory imputation. Third, to efficiently process large-scale AIS data, we introduce a workflow management layer that coordinates the end-to-end pipeline, enabling parallel knowledge extraction and trajectory imputation with anomaly handling and redundancy elimination. Experiments on two large AIS datasets show that VISTA is capable of state-of-the-art imputation accuracy and computational efficiency, improving over state-of-the-art baselines by 5%-94% and reducing time cost by 51%-93%, while producing interpretable knowledge cues that benefit downstream tasks. The source code and implementation details of VISTA are publicly available.
Privacy-preserving Transformer inference has gained attention due to the potential leakage of private information. Despite recent progress, existing frameworks still fall short of practical model scales, with gaps up to a hundredfold. A possible way to close this gap is the Mixture of Experts (MoE) architecture, which has emerged as a promising technique to scale up model capacity with minimal overhead. However, given that the current secure two-party (2-PC) protocols allow the server to homomorphically compute the FFN layer with its plaintext model weight, under the MoE setting, this could reveal which expert is activated to the server, exposing token-level privacy about the client's input. While naively evaluating all the experts before selection could protect privacy, it nullifies MoE sparsity and incurs the heavy computational overhead that sparse MoE seeks to avoid. To address the privacy and efficiency limitations above, we propose a 2-PC privacy-preserving inference framework, \SecMoE. Unifying per-entry circuits in both the MoE layer and piecewise polynomial functions, \SecMoE obliviously selects the extracted parameters from circuits and only computes one encrypted entry, which we refer to as Select-Then-Compute. This makes the model for private inference scale to 63$\times$ larger while only having a 15.2$\times$ increase in end-to-end runtime. Extensive experiments show that, under 5 expert settings, \SecMoE lowers the end-to-end private inference communication by 1.8$\sim$7.1$\times$ and achieves 1.3$\sim$3.8$\times$ speedup compared to the state-of-the-art (SOTA) protocols.
Multimodal learning aims to enhance perceptual and decision-making capabilities by integrating information from diverse sources. However, classical deep learning approaches face a critical trade-off between the high accuracy of black-box feature-level fusion and the interpretability of less outstanding decision-level fusion, alongside the challenges of parameter explosion and complexity. This paper discusses the accuracy-interpretablity-complexity dilemma under the quantum computation framework and propose a feature entanglement-based quantum multimodal fusion neural network. The model is composed of three core components: a classical feed-forward module for unimodal processing, an interpretable quantum fusion block, and a quantum convolutional neural network (QCNN) for deep feature extraction. By leveraging the strong expressive power of quantum, we have reduced the complexity of multimodal fusion and post-processing to linear, and the fusion process also possesses the interpretability of decision-level fusion. The simulation results demonstrate that our model achieves classification accuracy comparable to classical networks with dozens of times of parameters, exhibiting notable stability and performance across multimodal image datasets.