Abstract:Predicting injuries and fatalities in traffic crashes plays a critical role in enhancing road safety, improving emergency response, and guiding public health interventions. This study investigates the added value of unstructured crash narratives (written by police officers at the scene) when combined with structured crash data to predict injury severity. Two widely used Natural Language Processing (NLP) techniques, Term Frequency-Inverse Document Frequency (TF-IDF) and Word2Vec, were employed to extract semantic meaning from the narratives, and their effectiveness was compared. To address the challenge of class imbalance, a K-Nearest Neighbors-based oversampling method was applied to the training data prior to modeling. The dataset consists of crash records from Kentucky spanning 2019 to 2023. To account for roadway heterogeneity, three road classification schemes were used: (1) eight detailed functional classes (e.g., Urban Two-Lane, Rural Interstate, Urban Multilane Divided), (2) four broader paired categories (e.g., Urban vs. Rural, Freeway vs. Non-Freeway), and (3) a unified dataset without classification. A total of 102 machine learning models were developed by combining structured features and narrative-based features using the two NLP techniques alongside three ensemble algorithms: XGBoost, Random Forest, and AdaBoost. Results demonstrate that models incorporating narrative data consistently outperform those relying solely on structured data. Among all combinations, TF-IDF coupled with XGBoost yielded the most accurate predictions in most subgroups. The findings highlight the power of integrating textual and structured crash information to enhance person-level injury prediction. This work offers a practical and adaptable framework for transportation safety professionals to improve crash severity modeling, guide policy decisions, and design more effective countermeasures.
Abstract:Simultaneous electrocardiography (ECG) and phonocardiogram (PCG) provide a comprehensive, multimodal perspective on cardiac function by capturing the heart's electrical and mechanical activities, respectively. However, the distinct and overlapping information content of these signals, as well as their potential for mutual reconstruction and biomarker extraction, remains incompletely understood, especially under varying physiological conditions and across individuals. In this study, we systematically investigate the common and exclusive characteristics of ECG and PCG using the EPHNOGRAM dataset of simultaneous ECG-PCG recordings during rest and exercise. We employ a suite of linear and nonlinear machine learning models, including non-causal LSTM networks, to reconstruct each modality from the other and analyze the influence of causality, physiological state, and cross-subject variability. Our results demonstrate that nonlinear models, particularly non-causal LSTM, provide superior reconstruction performance, with reconstructing ECG from PCG proving more tractable than the reverse. Exercise and cross-subject scenarios present significant challenges, but envelope-based modeling that utilizes instantaneous amplitude features substantially improves cross-subject generalizability for cross-modal learning. Furthermore, we demonstrate that clinically relevant ECG biomarkers, such as fiducial points and QT intervals, can be estimated from PCG in cross-subject settings. These findings advance our understanding of the relationship between electromechanical cardiac modalities, in terms of both waveform characteristics and the timing of cardiac events, with potential applications in novel multimodal cardiac monitoring technologies.
Abstract:Cardiovascular diseases are best diagnosed using multiple modalities that assess both the heart's electrical and mechanical functions. While effective, imaging techniques like echocardiography and nuclear imaging are costly and not widely accessible. More affordable technologies, such as simultaneous electrocardiography (ECG) and phonocardiography (PCG), may provide valuable insights into electromechanical coupling and could be useful for prescreening in low-resource settings. Using physical stress test data from the EPHNOGRAM ECG-PCG dataset, collected from 23 healthy male subjects (age: 25.4+/-1.9 yrs), we investigated electromechanical intervals (RR, QT, systolic, and diastolic) and their interactions during exercise, along with hysteresis between cardiac electrical activity and mechanical responses. Time delay analysis revealed distinct temporal relationships between QT, systolic, and diastolic intervals, with RR as the primary driver. The diastolic interval showed near-synchrony with RR, while QT responded to RR interval changes with an average delay of 10.5s, and the systolic interval responded more slowly, with an average delay of 28.3s. We examined QT-RR, systolic-RR, and diastolic-RR hysteresis, finding narrower loops for diastolic RR and wider loops for systolic RR. Significant correlations (average:0.75) were found between heart rate changes and hysteresis loop areas, suggesting the equivalent circular area diameter as a promising biomarker for cardiac function under exercise stress. Deep learning models, including Long Short-Term Memory and Convolutional Neural Networks, estimated the QT, systolic, and diastolic intervals from RR data, confirming the nonlinear relationship between RR and other intervals. Findings highlight a significant cardiac memory effect, linking ECG and PCG morphology and timing to heart rate history.