Text-to-image generation is the process of generating images from textual descriptions using deep learning techniques.
Text-to-image diffusion models achieve impressive generation quality but inherit and amplify training-data biases, skewing coverage of semantic attributes. Prior work addresses this in two ways. Closed-set approaches mitigate biases in predefined fairness categories (e.g., gender, race), assuming socially salient minority attributes are known a priori. Open-set approaches frame the task as bias identification, highlighting majority attributes that dominate outputs. Both overlook a complementary task: uncovering rare or minority features underrepresented in the data distribution (social, cultural, or stylistic) yet still encoded in model representations. We introduce RAIGen, the first framework, to our knowledge, for un-supervised rare-attribute discovery in diffusion models. RAIGen leverages Matryoshka Sparse Autoencoders and a novel minority metric combining neuron activation frequency with semantic distinctiveness to identify interpretable neurons whose top-activating images reveal underrepresented attributes. Experiments show RAIGen discovers attributes beyond fixed fairness categories in Stable Diffusion, scales to larger models such as SDXL, supports systematic auditing across architectures, and enables targeted amplification of rare attributes during generation.
To tackle the automatic recognition of "concealed emotions" in videos, this paper proposes a multimodal weak-supervision framework and achieves state-of-the-art results on the iMiGUE tennis-interview dataset. First, YOLO 11x detects and crops human portraits frame-by-frame, and DINOv2-Base extracts visual features from the cropped regions. Next, by integrating Chain-of-Thought and Reflection prompting (CoT + Reflection), Gemini 2.5 Pro automatically generates pseudo-labels and reasoning texts that serve as weak supervision for downstream models. Subsequently, OpenPose produces 137-dimensional key-point sequences, augmented with inter-frame offset features; the usual graph neural network backbone is simplified to an MLP to efficiently model the spatiotemporal relationships of the three key-point streams. An ultra-long-sequence Transformer independently encodes both the image and key-point sequences, and their representations are concatenated with BERT-encoded interview transcripts. Each modality is first pre-trained in isolation, then fine-tuned jointly, with pseudo-labeled samples merged into the training set for further gains. Experiments demonstrate that, despite severe class imbalance, the proposed approach lifts accuracy from under 0.6 in prior work to over 0.69, establishing a new public benchmark. The study also validates that an "MLP-ified" key-point backbone can match - or even surpass - GCN-based counterparts in this task.
Retrieving wrist radiographs with analogous fracture patterns is challenging because clinically important cues are subtle, highly localized and often obscured by overlapping anatomy or variable imaging views. Progress is further limited by the scarcity of large, well-annotated datasets for case-based medical image retrieval. We introduce WristMIR, a region-aware pediatric wrist radiograph retrieval framework that leverages dense radiology reports and bone-specific localization to learn fine-grained, clinically meaningful image representations without any manual image-level annotations. Using MedGemma-based structured report mining to generate both global and region-level captions, together with pre-processed wrist images and bone-specific crops of the distal radius, distal ulna, and ulnar styloid, WristMIR jointly trains global and local contrastive encoders and performs a two-stage retrieval process: (1) coarse global matching to identify candidate exams, followed by (2) region-conditioned reranking aligned to a predefined anatomical bone region. WristMIR improves retrieval performance over strong vision-language baselines, raising image-to-text Recall@5 from 0.82% to 9.35%. Its embeddings also yield stronger fracture classification (AUROC 0.949, AUPRC 0.953). In region-aware evaluation, the two-stage design markedly improves retrieval-based fracture diagnosis, increasing mean $F_1$ from 0.568 to 0.753, and radiologists rate its retrieved cases as more clinically relevant, with mean scores rising from 3.36 to 4.35. These findings highlight the potential of anatomically guided retrieval to enhance diagnostic reasoning and support clinical decision-making in pediatric musculoskeletal imaging. The source code is publicly available at https://github.com/quin-med-harvard-edu/WristMIR.
Recent unified models such as Bagel demonstrate that paired image-edit data can effectively align multiple visual tasks within a single diffusion transformer. However, these models remain limited to single-condition inputs and lack the flexibility needed to synthesize results from multiple heterogeneous sources. We present SIGMA (Selective-Interleaved Generation with Multi-Attribute Tokens), a unified post-training framework that enables interleaved multi-condition generation within diffusion transformers. SIGMA introduces selective multi-attribute tokens, including style, content, subject, and identity tokens, which allow the model to interpret and compose multiple visual conditions in an interleaved text-image sequence. Through post-training on the Bagel unified backbone with 700K interleaved examples, SIGMA supports compositional editing, selective attribute transfer, and fine-grained multimodal alignment. Extensive experiments show that SIGMA improves controllability, cross-condition consistency, and visual quality across diverse editing and generation tasks, with substantial gains over Bagel on compositional tasks.
Infographics are widely used to communicate information with a combination of text, icons, and data visualizations, but once exported as images their content is locked into pixels, making updates, localization, and reuse expensive. We describe \textsc{Images2Slides}, an API-based pipeline that converts a static infographic (PNG/JPG) into a native, editable Google Slides slide by extracting a region-level specification with a vision-language model (VLM), mapping pixel geometry into slide coordinates, and recreating elements using the Google Slides batch update API. The system is model-agnostic and supports multiple VLM backends via a common JSON region schema and deterministic postprocessing. On a controlled benchmark of 29 programmatically generated infographic slides with known ground-truth regions, \textsc{Images2Slides} achieves an overall element recovery rate of $0.989\pm0.057$ (text: $0.985\pm0.083$, images: $1.000\pm0.000$), with mean text transcription error $\mathrm{CER}=0.033\pm0.149$ and mean layout fidelity $\mathrm{IoU}=0.364\pm0.161$ for text regions and $0.644\pm0.131$ for image regions. We also highlight practical engineering challenges in reconstruction, including text size calibration and non-uniform backgrounds, and describe failure modes that guide future work.
Unified multimodal models (UMMs) have achieved remarkable progress yet remain constrained by a single-turn interaction paradigm, effectively functioning as solvers for independent requests rather than assistants in continuous dialogue. To bridge this gap, we present ChatUMM. As a conversational unified model, it excels at robust context tracking to sustain interleaved multimodal generation. ChatUMM derives its capabilities from two key innovations: an interleaved multi-turn training strategy that models serialized text-image streams as a continuous conversational flow, and a systematic conversational data synthesis pipeline. This pipeline transforms a diverse set of standard single-turn datasets into fluid dialogues through three progressive stages: constructing basic stateful dialogues, enforcing long-range dependency resolution via ``distractor'' turns with history-dependent query rewriting, and synthesizing naturally interleaved multimodal responses. Extensive evaluations demonstrate that ChatUMM achieves state-of-the-art performance among open-source unified models on visual understanding and instruction-guided editing benchmarks, while maintaining competitive fidelity in text-to-image generation. Notably, ChatUMM exhibits superior robustness in complex multi-turn scenarios, ensuring fluid, context-aware dialogues.
Deploying GRPO on Flow Matching models has proven effective for text-to-image generation. However, existing paradigms typically propagate an outcome-based reward to all preceding denoising steps without distinguishing the local effect of each step. Moreover, current group-wise ranking mainly compares trajectories at matched timesteps and ignores within-trajectory dependencies, where certain early denoising actions can affect later states via delayed, implicit interactions. We propose TurningPoint-GRPO (TP-GRPO), a GRPO framework that alleviates step-wise reward sparsity and explicitly models long-term effects within the denoising trajectory. TP-GRPO makes two key innovations: (i) it replaces outcome-based rewards with step-level incremental rewards, providing a dense, step-aware learning signal that better isolates each denoising action's "pure" effect, and (ii) it identifies turning points-steps that flip the local reward trend and make subsequent reward evolution consistent with the overall trajectory trend-and assigns these actions an aggregated long-term reward to capture their delayed impact. Turning points are detected solely via sign changes in incremental rewards, making TP-GRPO efficient and hyperparameter-free. Extensive experiments also demonstrate that TP-GRPO exploits reward signals more effectively and consistently improves generation. Demo code is available at https://github.com/YunzeTong/TurningPoint-GRPO.
Reinforcement learning from human feedback (RLHF) shows promise for aligning diffusion and flow models, yet policy optimization methods such as GRPO suffer from inefficient and static sampling strategies. These methods treat all prompts and denoising steps uniformly, ignoring substantial variations in sample learning value as well as the dynamic nature of critical exploration moments. To address this issue, we conduct a detailed analysis of the internal attention dynamics during GRPO training and uncover a key insight: attention entropy can serve as a powerful dual-signal proxy. First, across different samples, the relative change in attention entropy (ΔEntropy), which reflects the divergence between the current policy and the base policy, acts as a robust indicator of sample learning value. Second, during the denoising process, the peaks of absolute attention entropy (Entropy(t)), which quantify attention dispersion, effectively identify critical timesteps where high-value exploration occurs. Building on this observation, we propose Adaptive Entropy-Guided Policy Optimization (AEGPO), a novel dual-signal, dual-level adaptive optimization strategy. At the global level, AEGPO uses ΔEntropy to dynamically allocate rollout budgets, prioritizing prompts with higher learning value. At the local level, it exploits the peaks of Entropy(t) to guide exploration selectively at critical high-dispersion timesteps rather than uniformly across all denoising steps. By focusing computation on the most informative samples and the most critical moments, AEGPO enables more efficient and effective policy optimization. Experiments on text-to-image generation tasks demonstrate that AEGPO significantly accelerates convergence and achieves superior alignment performance compared to standard GRPO variants.
Tabular data is frequently captured in image form across a wide range of real-world scenarios such as financial reports, handwritten records, and document scans. These visual representations pose unique challenges for machine understanding, as they combine both structural and visual complexities. While recent advances in Multimodal Large Language Models (MLLMs) show promising results in table understanding, they typically assume the relevant table is readily available. However, a more practical scenario involves identifying and reasoning over relevant tables from large-scale collections to answer user queries. To address this gap, we propose TabRAG, a framework that enables MLLMs to answer queries over large collections of table images. Our approach first retrieves candidate tables using jointly trained visual-text foundation models, then leverages MLLMs to perform fine-grained reranking of these candidates, and finally employs MLLMs to reason over the selected tables for answer generation. Through extensive experiments on a newly constructed dataset comprising 88,161 training and 9,819 testing samples across 8 benchmarks with 48,504 unique tables, we demonstrate that our framework significantly outperforms existing methods by 7.0% in retrieval recall and 6.1% in answer accuracy, offering a practical solution for real-world table understanding tasks.
Existing methods for preference tuning of text-to-image (T2I) diffusion models often rely on computationally expensive generation steps to create positive and negative pairs of images. These approaches frequently yield training pairs that either lack meaningful differences, are expensive to sample and filter, or exhibit significant variance in irrelevant pixel regions, thereby degrading training efficiency. To address these limitations, we introduce "Di3PO", a novel method for constructing positive and negative pairs that isolates specific regions targeted for improvement during preference tuning, while keeping the surrounding context in the image stable. We demonstrate the efficacy of our approach by applying it to the challenging task of text rendering in diffusion models, showcasing improvements over baseline methods of SFT and DPO.