Abstract:We present UniTalk, a novel dataset specifically designed for the task of active speaker detection, emphasizing challenging scenarios to enhance model generalization. Unlike previously established benchmarks such as AVA, which predominantly features old movies and thus exhibits significant domain gaps, UniTalk focuses explicitly on diverse and difficult real-world conditions. These include underrepresented languages, noisy backgrounds, and crowded scenes - such as multiple visible speakers speaking concurrently or in overlapping turns. It contains over 44.5 hours of video with frame-level active speaker annotations across 48,693 speaking identities, and spans a broad range of video types that reflect real-world conditions. Through rigorous evaluation, we show that state-of-the-art models, while achieving nearly perfect scores on AVA, fail to reach saturation on UniTalk, suggesting that the ASD task remains far from solved under realistic conditions. Nevertheless, models trained on UniTalk demonstrate stronger generalization to modern "in-the-wild" datasets like Talkies and ASW, as well as to AVA. UniTalk thus establishes a new benchmark for active speaker detection, providing researchers with a valuable resource for developing and evaluating versatile and resilient models. Dataset: https://huggingface.co/datasets/plnguyen2908/UniTalk-ASD Code: https://github.com/plnguyen2908/UniTalk-ASD-code
Abstract:Active Speaker Detection (ASD) aims to identify speaking individuals in complex visual scenes. While humans can easily detect speech by matching lip movements to audio, current ASD models struggle to establish this correspondence, often misclassifying non-speaking instances when audio and lip movements are unsynchronized. To address this limitation, we propose Lip landmark Assisted Speaker dEtection for Robustness (LASER). Unlike models that rely solely on facial frames, LASER explicitly focuses on lip movements by integrating lip landmarks in training. Specifically, given a face track, LASER extracts frame-level visual features and the 2D coordinates of lip landmarks using a lightweight detector. These coordinates are encoded into dense feature maps, providing spatial and structural information on lip positions. Recognizing that landmark detectors may sometimes fail under challenging conditions (e.g., low resolution, occlusions, extreme angles), we incorporate an auxiliary consistency loss to align predictions from both lip-aware and face-only features, ensuring reliable performance even when lip data is absent. Extensive experiments across multiple datasets show that LASER outperforms state-of-the-art models, especially in scenarios with desynchronized audio and visuals, demonstrating robust performance in real-world video contexts. Code is available at \url{https://github.com/plnguyen2908/LASER_ASD}.