Abstract:Robust invisible watermarking aims to embed hidden messages into images such that they survive various manipulations while remaining imperceptible. However, powerful diffusion-based image generation and editing models now enable realistic content-preserving transformations that can inadvertently remove or distort embedded watermarks. In this paper, we present a theoretical and empirical analysis demonstrating that diffusion-based image editing can effectively break state-of-the-art robust watermarks designed to withstand conventional distortions. We analyze how the iterative noising and denoising process of diffusion models degrades embedded watermark signals, and provide formal proofs that under certain conditions a diffusion model's regenerated image retains virtually no detectable watermark information. Building on this insight, we propose a diffusion-driven attack that uses generative image regeneration to erase watermarks from a given image. Furthermore, we introduce an enhanced \emph{guided diffusion} attack that explicitly targets the watermark during generation by integrating the watermark decoder into the sampling loop. We evaluate our approaches on multiple recent deep learning watermarking schemes (e.g., StegaStamp, TrustMark, and VINE) and demonstrate that diffusion-based editing can reduce watermark decoding accuracy to near-zero levels while preserving high visual fidelity of the images. Our findings reveal a fundamental vulnerability in current robust watermarking techniques against generative model-based edits, underscoring the need for new watermarking strategies in the era of generative AI.


Abstract:Diffusion models have demonstrated remarkable image generation capabilities, but also pose risks in privacy and fairness by memorizing sensitive concepts or perpetuating biases. We propose a novel \textbf{concept erasure} method for text-to-image diffusion models, designed to remove specified concepts (e.g., a private individual or a harmful stereotype) from the model's generative repertoire. Our method, termed \textbf{FADE} (Fair Adversarial Diffusion Erasure), combines a trajectory-aware fine-tuning strategy with an adversarial objective to ensure the concept is reliably removed while preserving overall model fidelity. Theoretically, we prove a formal guarantee that our approach minimizes the mutual information between the erased concept and the model's outputs, ensuring privacy and fairness. Empirically, we evaluate FADE on Stable Diffusion and FLUX, using benchmarks from prior work (e.g., object, celebrity, explicit content, and style erasure tasks from MACE). FADE achieves state-of-the-art concept removal performance, surpassing recent baselines like ESD, UCE, MACE, and ANT in terms of removal efficacy and image quality. Notably, FADE improves the harmonic mean of concept removal and fidelity by 5--10\% over the best prior method. We also conduct an ablation study to validate each component of FADE, confirming that our adversarial and trajectory-preserving objectives each contribute to its superior performance. Our work sets a new standard for safe and fair generative modeling by unlearning specified concepts without retraining from scratch.