Multi-agent reinforcement learning is the process of training multiple agents to interact and collaborate in a shared environment.
Reinforcement Learning (RL) has achieved significant success in solving single-goal tasks. However, uniform goal selection often results in sample inefficiency in multi-goal settings where agents must learn a universal goal-conditioned policy. Inspired by the adaptive and structured learning processes observed in biological systems, we propose a novel Student-Teacher learning paradigm with a Temporal Variance-Driven Curriculum to accelerate Goal-Conditioned RL. In this framework, the teacher module dynamically prioritizes goals with the highest temporal variance in the policy's confidence score, parameterized by the state-action value (Q) function. The teacher provides an adaptive and focused learning signal by targeting these high-uncertainty goals, fostering continual and efficient progress. We establish a theoretical connection between the temporal variance of Q-values and the evolution of the policy, providing insights into the method's underlying principles. Our approach is algorithm-agnostic and integrates seamlessly with existing RL frameworks. We demonstrate this through evaluation across 11 diverse robotic manipulation and maze navigation tasks. The results show consistent and notable improvements over state-of-the-art curriculum learning and goal-selection methods.
In the context of smart city transportation, efficient matching of taxi supply with passenger demand requires real-time integration of urban traffic network data and mobility patterns. Conventional taxi hotspot prediction models often rely solely on historical demand, overlooking dynamic influences such as traffic congestion, road incidents, and public events. This paper presents a traffic-aware, graph-based reinforcement learning (RL) framework for optimal taxi placement in metropolitan environments. The urban road network is modeled as a graph where intersections represent nodes, road segments serve as edges, and node attributes capture historical demand, event proximity, and real-time congestion scores obtained from live traffic APIs. Graph Neural Network (GNN) embeddings are employed to encode spatial-temporal dependencies within the traffic network, which are then used by a Q-learning agent to recommend optimal taxi hotspots. The reward mechanism jointly optimizes passenger waiting time, driver travel distance, and congestion avoidance. Experiments on a simulated Delhi taxi dataset, generated using real geospatial boundaries and historic ride-hailing request patterns, demonstrate that the proposed model reduced passenger waiting time by about 56% and reduced travel distance by 38% compared to baseline stochastic selection. The proposed approach is adaptable to multi-modal transport systems and can be integrated into smart city platforms for real-time urban mobility optimization.
Multimodal Large Language Models (MLLMs) have achieved remarkable progress in vision-language tasks yet remain limited in long video understanding due to the limited context window. Consequently, prevailing approaches tend to rely on uniform frame sampling or static pre-selection, which might overlook critical evidence and unable to correct its initial selection error during its reasoning process. To overcome these limitations, we propose VideoZoomer, a novel agentic framework that enables MLLMs to dynamically control their visual focus during reasoning. Starting from a coarse low-frame-rate overview, VideoZoomer invokes a temporal zoom tool to obtain high-frame-rate clips at autonomously chosen moments, thereby progressively gathering fine-grained evidence in a multi-turn interactive manner. Accordingly, we adopt a two-stage training strategy: a cold-start supervised fine-tuning phase on a curated dataset of distilled exemplar and reflection trajectories, followed by reinforcement learning to further refine the agentic policy. Extensive experiments demonstrate that our 7B model delivers diverse and complex reasoning patterns, yielding strong performance across a broad set of long video understanding and reasoning benchmarks. These emergent capabilities allow it to consistently surpass existing open-source models and even rival proprietary systems on challenging tasks, while achieving superior efficiency under reduced frame budgets.
Automatic Prompt Optimization (APO) has emerged as a critical technique for enhancing Large Language Model (LLM) performance, yet current state-of-the-art methods typically rely on large, labeled gold-standard development sets to compute fitness scores for evolutionary or Reinforcement Learning (RL) approaches. In real-world software engineering, however, such curated datasets are rarely available during the initial cold start of agent development, where engineers instead face messy production logs and evolving failure modes. We present ROAD (Reflective Optimization via Automated Debugging), a novel framework that bypasses the need for refined datasets by treating optimization as a dynamic debugging investigation rather than a stochastic search. Unlike traditional mutation strategies, ROAD utilizes a specialized multi-agent architecture, comprising an Analyzer for root-cause analysis, an Optimizer for pattern aggregation, and a Coach for strategy integration, to convert unstructured failure logs into robust, structured Decision Tree Protocols. We evaluated ROAD across both a standardized academic benchmark and a live production Knowledge Management engine. Experimental results demonstrate that ROAD is highly sample-efficient, achieving a 5.6 percent increase in success rate (73.6 percent to 79.2 percent) and a 3.8 percent increase in search accuracy within just three automated iterations. Furthermore, on complex reasoning tasks in the retail domain, ROAD improved agent performance by approximately 19 percent relative to the baseline. These findings suggest that mimicking the human engineering loop of failure analysis and patching offers a viable, data-efficient alternative to resource-intensive RL training for deploying reliable LLM agents.



In multi-agent tasks, the central challenge lies in the dynamic adaptation of strategies. However, directly conditioning on opponents' strategies is intractable in the prevalent deep reinforcement learning paradigm due to a fundamental ``representational bottleneck'': neural policies are opaque, high-dimensional parameter vectors that are incomprehensible to other agents. In this work, we propose a paradigm shift that bridges this gap by representing policies as human-interpretable source code and utilizing Large Language Models (LLMs) as approximate interpreters. This programmatic representation allows us to operationalize the game-theoretic concept of \textit{Program Equilibrium}. We reformulate the learning problem by utilizing LLMs to perform optimization directly in the space of programmatic policies. The LLM functions as a point-wise best-response operator that iteratively synthesizes and refines the ego agent's policy code to respond to the opponent's strategy. We formalize this process as \textit{Programmatic Iterated Best Response (PIBR)}, an algorithm where the policy code is optimized by textual gradients, using structured feedback derived from game utility and runtime unit tests. We demonstrate that this approach effectively solves several standard coordination matrix games and a cooperative Level-Based Foraging environment.
We introduce the Nemotron 3 family of models - Nano, Super, and Ultra. These models deliver strong agentic, reasoning, and conversational capabilities. The Nemotron 3 family uses a Mixture-of-Experts hybrid Mamba-Transformer architecture to provide best-in-class throughput and context lengths of up to 1M tokens. Super and Ultra models are trained with NVFP4 and incorporate LatentMoE, a novel approach that improves model quality. The two larger models also include MTP layers for faster text generation. All Nemotron 3 models are post-trained using multi-environment reinforcement learning enabling reasoning, multi-step tool use, and support granular reasoning budget control. Nano, the smallest model, outperforms comparable models in accuracy while remaining extremely cost-efficient for inference. Super is optimized for collaborative agents and high-volume workloads such as IT ticket automation. Ultra, the largest model, provides state-of-the-art accuracy and reasoning performance. Nano is released together with its technical report and this white paper, while Super and Ultra will follow in the coming months. We will openly release the model weights, pre- and post-training software, recipes, and all data for which we hold redistribution rights.




Due to their inherent flexibility and autonomous operation, unmanned aerial vehicles (UAVs) have been widely used in Internet of Medical Things (IoMT) to provide real-time biomedical edge computing service for wireless body area network (WBAN) users. In this paper, considering the time-varying task criticality characteristics of diverse WBAN users and the dual mobility between WBAN users and UAV, we investigate the dynamic task offloading and UAV flight trajectory optimization problem to minimize the weighted average task completion time of all the WBAN users, under the constraint of UAV energy consumption. To tackle the problem, an embodied AI-enhanced IoMT edge computing framework is established. Specifically, we propose a novel hierarchical multi-scale Transformer-based user trajectory prediction model based on the users' historical trajectory traces captured by the embodied AI agent (i.e., UAV). Afterwards, a prediction-enhanced deep reinforcement learning (DRL) algorithm that integrates predicted users' mobility information is designed for intelligently optimizing UAV flight trajectory and task offloading decisions. Real-word movement traces and simulation results demonstrate the superiority of the proposed methods in comparison with the existing benchmarks.
Molecular editing and optimization are multi-step problems that require iteratively improving properties while keeping molecules chemically valid and structurally similar. We frame both tasks as sequential, tool-guided decisions and introduce MolAct, an agentic reinforcement learning framework that employs a two-stage training paradigm: first building editing capability, then optimizing properties while reusing the learned editing behaviors. To the best of our knowledge, this is the first work to formalize molecular design as an Agentic Reinforcement Learning problem, where an LLM agent learns to interleave reasoning, tool-use, and molecular optimization. The framework enables agents to interact in multiple turns, invoking chemical tools for validity checking, property assessment, and similarity control, and leverages their feedback to refine subsequent edits. We instantiate the MolAct framework to train two model families: MolEditAgent for molecular editing tasks and MolOptAgent for molecular optimization tasks. In molecular editing, MolEditAgent-7B delivers 100, 95, and 98 valid add, delete, and substitute edits, outperforming strong closed "thinking" baselines such as DeepSeek-R1; MolEditAgent-3B approaches the performance of much larger open "thinking" models like Qwen3-32B-think. In molecular optimization, MolOptAgent-7B (trained on MolEditAgent-7B) surpasses the best closed "thinking" baseline (e.g., Claude 3.7) on LogP and remains competitive on solubility, while maintaining balanced performance across other objectives. These results highlight that treating molecular design as a multi-step, tool-augmented process is key to reliable and interpretable improvements.
Large Reasoning Models (LRMs) like o3 and DeepSeek-R1 have achieved remarkable progress in natural language reasoning with long chain-of-thought. However, they remain computationally inefficient and struggle with accuracy when solving problems requiring complex mathematical operations. In this work, we present AgentMath, an agent framework that seamlessly integrates language models' reasoning capabilities with code interpreters' computational precision to efficiently tackle complex mathematical problems. Our approach introduces three key innovations: (1) An automated method that converts natural language chain-of-thought into structured tool-augmented trajectories, generating high-quality supervised fine-tuning (SFT) data to alleviate data scarcity; (2) A novel agentic reinforcement learning (RL) paradigm that dynamically interleaves natural language generation with real-time code execution. This enables models to autonomously learn optimal tool-use strategies through multi-round interactive feedback, while fostering emergent capabilities in code refinement and error correction; (3) An efficient training system incorporating innovative techniques, including request-level asynchronous rollout scheduling, agentic partial rollout, and prefix-aware weighted load balancing, achieving 4-5x speedup and making efficient RL training feasible on ultra-long sequences with scenarios with massive tool calls.Extensive evaluations show that AgentMath achieves state-of-the-art performance on challenging mathematical competition benchmarks including AIME24, AIME25, and HMMT25. Specifically, AgentMath-30B-A3B attains 90.6%, 86.4%, and 73.8% accuracy respectively, achieving advanced capabilities.These results validate the effectiveness of our approach and pave the way for building more sophisticated and scalable mathematical reasoning agents.




Autonomous multi-agent systems are fundamentally fragile: they struggle to solve the Hayekian Information problem (eliciting dispersed private knowledge) and the Hurwiczian Incentive problem (aligning local actions with global objectives), making coordination computationally intractable. I introduce Mechanism-Based Intelligence (MBI), a paradigm that reconceptualizes intelligence as emergent from the coordination of multiple "brains", rather than a single one. At its core, the Differentiable Price Mechanism (DPM) computes the exact loss gradient $$ \mathbf{G}_i = - \frac{\partial \mathcal{L}}{\partial \mathbf{x}_i} $$ as a dynamic, VCG-equivalent incentive signal, guaranteeing Dominant Strategy Incentive Compatibility (DSIC) and convergence to the global optimum. A Bayesian extension ensures incentive compatibility under asymmetric information (BIC). The framework scales linearly ($\mathcal{O}(N)$) with the number of agents, bypassing the combinatorial complexity of Dec-POMDPs and is empirically 50x faster than Model-Free Reinforcement Learning. By structurally aligning agent self-interest with collective objectives, it provides a provably efficient, auditable and generalizable approach to coordinated, trustworthy and scalable multi-agent intelligence grounded in economic principles.