Abstract:Recent advances in reinforcement learning for language model post-training, such as Group Relative Policy Optimization (GRPO), have shown promise in low-resource settings. However, GRPO typically relies on solution-level and scalar reward signals that fail to capture the semantic diversity among sampled completions. This leads to what we identify as a diversity-quality inconsistency, where distinct reasoning paths may receive indistinguishable rewards. To address this limitation, we propose $\textit{Diversity-aware Reward Adjustment}$ (DRA), a method that explicitly incorporates semantic diversity into the reward computation. DRA uses Submodular Mutual Information (SMI) to downweight redundant completions and amplify rewards for diverse ones. This encourages better exploration during learning, while maintaining stable exploitation of high-quality samples. Our method integrates seamlessly with both GRPO and its variant DR.~GRPO, resulting in $\textit{DRA-GRPO}$ and $\textit{DGA-DR.~GRPO}$. We evaluate our method on five mathematical reasoning benchmarks and find that it outperforms recent strong baselines. It achieves state-of-the-art performance with an average accuracy of 58.2%, using only 7,000 fine-tuning samples and a total training cost of approximately $55. The code is available at https://github.com/xiwenc1/DRA-GRPO.
Abstract:Actor-critic methods, like Twin Delayed Deep Deterministic Policy Gradient (TD3), depend on basic noise-based exploration, which can result in less than optimal policy convergence. In this study, we introduce Monte Carlo Beam Search (MCBS), a new hybrid method that combines beam search and Monte Carlo rollouts with TD3 to improve exploration and action selection. MCBS produces several candidate actions around the policy's output and assesses them through short-horizon rollouts, enabling the agent to make better-informed choices. We test MCBS across various continuous-control benchmarks, including HalfCheetah-v4, Walker2d-v5, and Swimmer-v5, showing enhanced sample efficiency and performance compared to standard TD3 and other baseline methods like SAC, PPO, and A2C. Our findings emphasize MCBS's capability to enhance policy learning through structured look-ahead search while ensuring computational efficiency. Additionally, we offer a detailed analysis of crucial hyperparameters, such as beam width and rollout depth, and explore adaptive strategies to optimize MCBS for complex control tasks. Our method shows a higher convergence rate across different environments compared to TD3, SAC, PPO, and A2C. For instance, we achieved 90% of the maximum achievable reward within around 200 thousand timesteps compared to 400 thousand timesteps for the second-best method.
Abstract:Analyzing time series data is crucial to a wide spectrum of applications, including economics, online marketplaces, and human healthcare. In particular, time series classification plays an indispensable role in segmenting different phases in stock markets, predicting customer behavior, and classifying worker actions and engagement levels. These aspects contribute significantly to the advancement of automated decision-making and system optimization in real-world applications. However, there is a large consensus that time series data often suffers from domain shifts between training and test sets, which dramatically degrades the classification performance. Despite the success of (reversible) instance normalization in handling the domain shifts for time series regression tasks, its performance in classification is unsatisfactory. In this paper, we propose \textit{FIC-TSC}, a training framework for time series classification that leverages Fisher information as the constraint. We theoretically and empirically show this is an efficient and effective solution to guide the model converge toward flatter minima, which enhances its generalizability to distribution shifts. We rigorously evaluate our method on 30 UEA multivariate and 85 UCR univariate datasets. Our empirical results demonstrate the superiority of the proposed method over 14 recent state-of-the-art methods.
Abstract:Multiple Instance Learning (MIL) is a popular weakly-supervised method for various applications, with a particular interest in histological whole slide image (WSI) classification. Due to the gigapixel resolution of WSI, applications of MIL in WSI typically necessitate a two-stage training scheme: first, extract features from the pre-trained backbone and then perform MIL aggregation. However, it is well-known that this suboptimal training scheme suffers from "noisy" feature embeddings from the backbone and inherent weak supervision, hindering MIL from learning rich and generalizable features. However, the most commonly used technique (i.e., dropout) for mitigating this issue has yet to be explored in MIL. In this paper, we empirically explore how effective the dropout can be in MIL. Interestingly, we observe that dropping the top-k most important instances within a bag leads to better performance and generalization even under noise attack. Based on this key observation, we propose a novel MIL-specific dropout method, termed MIL-Dropout, which systematically determines which instances to drop. Experiments on five MIL benchmark datasets and two WSI datasets demonstrate that MIL-Dropout boosts the performance of current MIL methods with a negligible computational cost. The code is available at https://github.com/ChongQingNoSubway/MILDropout.
Abstract:Mission planning for a fleet of cooperative autonomous drones in applications that involve serving distributed target points, such as disaster response, environmental monitoring, and surveillance, is challenging, especially under partial observability, limited communication range, and uncertain environments. Traditional path-planning algorithms struggle in these scenarios, particularly when prior information is not available. To address these challenges, we propose a novel framework that integrates Graph Neural Networks (GNNs), Deep Reinforcement Learning (DRL), and transformer-based mechanisms for enhanced multi-agent coordination and collective task execution. Our approach leverages GNNs to model agent-agent and agent-goal interactions through adaptive graph construction, enabling efficient information aggregation and decision-making under constrained communication. A transformer-based message-passing mechanism, augmented with edge-feature-enhanced attention, captures complex interaction patterns, while a Double Deep Q-Network (Double DQN) with prioritized experience replay optimizes agent policies in partially observable environments. This integration is carefully designed to address specific requirements of multi-agent navigation, such as scalability, adaptability, and efficient task execution. Experimental results demonstrate superior performance, with 90% service provisioning and 100% grid coverage (node discovery), while reducing the average steps per episode to 200, compared to 600 for benchmark methods such as particle swarm optimization (PSO), greedy algorithms and DQN.
Abstract:Fire and smoke phenomena pose a significant threat to the natural environment, ecosystems, and global economy, as well as human lives and wildlife. In this particular circumstance, there is a demand for more sophisticated and advanced technologies to implement an effective strategy for early detection, real-time monitoring, and minimizing the overall impacts of fires on ecological balance and public safety. Recently, the rapid advancement of Artificial Intelligence (AI) and Computer Vision (CV) frameworks has substantially revolutionized the momentum for developing efficient fire management systems. However, these systems extensively rely on the availability of adequate and high-quality fire and smoke data to create proficient Machine Learning (ML) methods for various tasks, such as detection and monitoring. Although fire and smoke datasets play a critical role in training, evaluating, and testing advanced Deep Learning (DL) models, a comprehensive review of the existing datasets is still unexplored. For this purpose, we provide an in-depth review to systematically analyze and evaluate fire and smoke datasets collected over the past 20 years. We investigate the characteristics of each dataset, including type, size, format, collection methods, and geographical diversities. We also review and highlight the unique features of each dataset, such as imaging modalities (RGB, thermal, infrared) and their applicability for different fire management tasks (classification, segmentation, detection). Furthermore, we summarize the strengths and weaknesses of each dataset and discuss their potential for advancing research and technology in fire management. Ultimately, we conduct extensive experimental analyses across different datasets using several state-of-the-art algorithms, such as ResNet-50, DeepLab-V3, and YoloV8.
Abstract:Vision-language models (VLMs) such as CLIP demonstrate strong performance but struggle when adapted to downstream tasks. Prompt learning has emerged as an efficient and effective strategy to adapt VLMs while preserving their pre-trained knowledge. However, existing methods still lead to overfitting and degrade zero-shot generalization. To address this challenge, we propose an optimal transport (OT)-guided prompt learning framework that mitigates forgetting by preserving the structural consistency of feature distributions between pre-trained and fine-tuned models. Unlike conventional point-wise constraints, OT naturally captures cross-instance relationships and expands the feasible parameter space for prompt tuning, allowing a better trade-off between adaptation and generalization. Our approach enforces joint constraints on both vision and text representations, ensuring a holistic feature alignment. Extensive experiments on benchmark datasets demonstrate that our simple yet effective method can outperform existing prompt learning strategies in base-to-novel generalization, cross-dataset evaluation, and domain generalization without additional augmentation or ensemble techniques. The code is available at https://github.com/ChongQingNoSubway/Prompt-OT
Abstract:Anomaly detection is a critical requirement for ensuring safety in autonomous driving. In this work, we leverage Cooperative Perception to share information across nearby vehicles, enabling more accurate identification and consensus of anomalous behaviors in complex traffic scenarios. To account for the real-world challenge of imperfect communication, we propose a cooperative-perception-based anomaly detection framework (CPAD), which is a robust architecture that remains effective under communication interruptions, thereby facilitating reliable performance even in low-bandwidth settings. Since no multi-agent anomaly detection dataset exists for vehicle trajectories, we introduce 15,000 different scenarios with a 90,000 trajectories benchmark dataset generated through rule-based vehicle dynamics analysis. Empirical results demonstrate that our approach outperforms standard anomaly classification methods in F1-score, AUC and showcase strong robustness to agent connection interruptions.
Abstract:Since its introduction, the transformer has shifted the development trajectory away from traditional models (e.g., RNN, MLP) in time series forecasting, which is attributed to its ability to capture global dependencies within temporal tokens. Follow-up studies have largely involved altering the tokenization and self-attention modules to better adapt Transformers for addressing special challenges like non-stationarity, channel-wise dependency, and variable correlation in time series. However, we found that the expressive capability of sequence representation is a key factor influencing Transformer performance in time forecasting after investigating several representative methods, where there is an almost linear relationship between sequence representation entropy and mean square error, with more diverse representations performing better. In this paper, we propose a novel attention mechanism with Sequence Complementors and prove feasible from an information theory perspective, where these learnable sequences are able to provide complementary information beyond current input to feed attention. We further enhance the Sequence Complementors via a diversification loss that is theoretically covered. The empirical evaluation of both long-term and short-term forecasting has confirmed its superiority over the recent state-of-the-art methods.
Abstract:The emergence of generative AI and controllable diffusion has made image-to-image synthesis increasingly practical and efficient. However, when input images exhibit low entropy and sparse, the inherent characteristics of diffusion models often result in limited diversity. This constraint significantly interferes with data augmentation. To address this, we propose Diffusion Prism, a training-free framework that efficiently transforms binary masks into realistic and diverse samples while preserving morphological features. We explored that a small amount of artificial noise will significantly assist the image-denoising process. To prove this novel mask-to-image concept, we use nano-dendritic patterns as an example to demonstrate the merit of our method compared to existing controllable diffusion models. Furthermore, we extend the proposed framework to other biological patterns, highlighting its potential applications across various fields.