Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
With Large language models (LLMs) becoming increasingly prevalent in various applications, the need for interpreting their predictions has become a critical challenge. As LLMs vary in architecture and some are closed-sourced, model-agnostic techniques show great promise without requiring access to the model's internal parameters. However, existing model-agnostic techniques need to invoke LLMs many times to gain sufficient samples for generating faithful explanations, which leads to high economic costs. In this paper, we show that it is practical to generate faithful explanations for large-scale LLMs by sampling from some budget-friendly models through a series of empirical studies. Moreover, we show that such proxy explanations also perform well on downstream tasks. Our analysis provides a new paradigm of model-agnostic explanation methods for LLMs, by including information from budget-friendly models.
This paper proposes FAS-LLM, a novel large language model (LLM)-based architecture for predicting future channel states in Orthogonal Time Frequency Space (OTFS)-enabled satellite downlinks equipped with fluid antenna systems (FAS). The proposed method introduces a two-stage channel compression strategy combining reference-port selection and separable principal component analysis (PCA) to extract compact, delay-Doppler-aware representations from high-dimensional OTFS channels. These representations are then embedded into a LoRA-adapted LLM, enabling efficient time-series forecasting of channel coefficients. Performance evaluations demonstrate that FAS-LLM outperforms classical baselines including GRU, LSTM, and Transformer models, achieving up to 10 dB normalized mean squared error (NMSE) improvement and threefold root mean squared error (RMSE) reduction across prediction horizons. Furthermore, the predicted channels preserve key physical-layer characteristics, enabling near-optimal performance in ergodic capacity, spectral efficiency, and outage probability across a wide range of signal-to-noise ratios (SNRs). These results highlight the potential of LLM-based forecasting for delay-sensitive and energy-efficient link adaptation in future satellite IoT networks.
Delirium represents a significant clinical concern characterized by high morbidity and mortality rates, particularly in patients with mild cognitive impairment (MCI). This study investigates the associated risk factors for delirium by analyzing the comorbidity patterns relevant to MCI and developing a longitudinal predictive model leveraging machine learning methodologies. A retrospective analysis utilizing the MIMIC-IV v2.2 database was performed to evaluate comorbid conditions, survival probabilities, and predictive modeling outcomes. The examination of comorbidity patterns identified distinct risk profiles for the MCI population. Kaplan-Meier survival analysis demonstrated that individuals with MCI exhibit markedly reduced survival probabilities when developing delirium compared to their non-MCI counterparts, underscoring the heightened vulnerability within this cohort. For predictive modeling, a Long Short-Term Memory (LSTM) ML network was implemented utilizing time-series data, demographic variables, Charlson Comorbidity Index (CCI) scores, and an array of comorbid conditions. The model demonstrated robust predictive capabilities with an AUROC of 0.93 and an AUPRC of 0.92. This study underscores the critical role of comorbidities in evaluating delirium risk and highlights the efficacy of time-series predictive modeling in pinpointing patients at elevated risk for delirium development.
Irregular temporal data, characterized by varying recording frequencies, differing observation durations, and missing values, presents significant challenges across fields like mobility, healthcare, and environmental science. Existing research communities often overlook or address these challenges in isolation, leading to fragmented tools and methods. To bridge this gap, we introduce a unified framework, and the first standardized dataset repository for irregular time series classification, built on a common array format to enhance interoperability. This repository comprises 34 datasets on which we benchmark 12 classifier models from diverse domains and communities. This work aims to centralize research efforts and enable a more robust evaluation of irregular temporal data analysis methods.




Satellite image time series (SITS) provide continuous observations of the Earth's surface, making them essential for applications such as environmental management and disaster assessment. However, existing spatiotemporal foundation models rely on plain vision transformers, which encode entire temporal sequences without explicitly capturing multiscale spatiotemporal relationships between land objects. This limitation hinders their effectiveness in downstream tasks. To overcome this challenge, we propose TiMo, a novel hierarchical vision transformer foundation model tailored for SITS analysis. At its core, we introduce a spatiotemporal gyroscope attention mechanism that dynamically captures evolving multiscale patterns across both time and space. For pre-training, we curate MillionST, a large-scale dataset of one million images from 100,000 geographic locations, each captured across 10 temporal phases over five years, encompassing diverse geospatial changes and seasonal variations. Leveraging this dataset, we adapt masked image modeling to pre-train TiMo, enabling it to effectively learn and encode generalizable spatiotemporal representations.Extensive experiments across multiple spatiotemporal tasks-including deforestation monitoring, land cover segmentation, crop type classification, and flood detection-demonstrate TiMo's superiority over state-of-the-art methods. Code, model, and dataset will be released at https://github.com/MiliLab/TiMo.
Analyzing multi-featured time series data is critical for space missions making efficient event detection, potentially onboard, essential for automatic analysis. However, limited onboard computational resources and data downlink constraints necessitate robust methods for identifying regions of interest in real time. This work presents an adaptive outlier detection algorithm based on the reconstruction error of Principal Component Analysis (PCA) for feature reduction, designed explicitly for space mission applications. The algorithm adapts dynamically to evolving data distributions by using Incremental PCA, enabling deployment without a predefined model for all possible conditions. A pre-scaling process normalizes each feature's magnitude while preserving relative variance within feature types. We demonstrate the algorithm's effectiveness in detecting space plasma events, such as distinct space environments, dayside and nightside transients phenomena, and transition layers through NASA's MMS mission observations. Additionally, we apply the method to NASA's THEMIS data, successfully identifying a dayside transient using onboard-available measurements.
The Earth's surface is subject to complex and dynamic processes, ranging from large-scale phenomena such as tectonic plate movements to localized changes associated with ecosystems, agriculture, or human activity. Satellite images enable global monitoring of these processes with extensive spatial and temporal coverage, offering advantages over in-situ methods. In particular, resulting satellite image time series (SITS) datasets contain valuable information. To handle their large volume and complexity, some recent works focus on the use of graph-based techniques that abandon the regular Euclidean structure of satellite data to work at an object level. Besides, graphs enable modelling spatial and temporal interactions between identified objects, which are crucial for pattern detection, classification and regression tasks. This paper is an effort to examine the integration of graph-based methods in spatio-temporal remote-sensing analysis. In particular, it aims to present a versatile graph-based pipeline to tackle SITS analysis. It focuses on the construction of spatio-temporal graphs from SITS and their application to downstream tasks. The paper includes a comprehensive review and two case studies, which highlight the potential of graph-based approaches for land cover mapping and water resource forecasting. It also discusses numerous perspectives to resolve current limitations and encourage future developments.
Deep learning models have significantly improved the ability to detect novelties in time series (TS) data. This success is attributed to their strong representation capabilities. However, due to the inherent variability in TS data, these models often struggle with generalization and robustness. To address this, a common approach is to perform Unsupervised Domain Adaptation, particularly Universal Domain Adaptation (UniDA), to handle domain shifts and emerging novel classes. While extensively studied in computer vision, UniDA remains underexplored for TS data. This work provides a comprehensive implementation and comparison of state-of-the-art TS backbones in a UniDA framework. We propose a reliable protocol to evaluate their robustness and generalization across different domains. The goal is to provide practitioners with a framework that can be easily extended to incorporate future advancements in UniDA and TS architectures. Our results highlight the critical influence of backbone selection in UniDA performance and enable a robustness analysis across various datasets and architectures.
Generative AI systems have revolutionized human interaction by enabling natural language-based coding and problem solving. However, the inherent ambiguity of natural language often leads to imprecise instructions, forcing users to iteratively test, correct, and resubmit their prompts. We propose an iterative approach that systematically narrows down these ambiguities through a structured series of clarification questions and alternative solution proposals, illustrated with input/output examples as well. Once every uncertainty is resolved, a final, precise solution is generated. Evaluated on a diverse dataset spanning coding, data analysis, and creative writing, our method demonstrates superior accuracy, competitive resolution times, and higher user satisfaction compared to conventional one-shot solutions, which typically require multiple manual iterations to achieve a correct output.
Attention mechanisms are widely used in artificial intelligence to enhance performance and interpretability. In this paper, we investigate their utility in modeling classical dynamical systems -- specifically, a noisy predator-prey (Lotka-Volterra) system. We train a simple linear attention model on perturbed time-series data to reconstruct system trajectories. Remarkably, the learned attention weights align with the geometric structure of the Lyapunov function: high attention corresponds to flat regions (where perturbations have small effect), and low attention aligns with steep regions (where perturbations have large effect). We further demonstrate that attention-based weighting can serve as a proxy for sensitivity analysis, capturing key phase-space properties without explicit knowledge of the system equations. These results suggest a novel use of AI-derived attention for interpretable, data-driven analysis and control of nonlinear systems. For example our framework could support future work in biological modeling of circadian rhythms, and interpretable machine learning for dynamical environments.