We show that the GPS tags contained in photo metadata provide a useful control signal for image generation. We train GPS-to-image models and use them for tasks that require a fine-grained understanding of how images vary within a city. In particular, we train a diffusion model to generate images conditioned on both GPS and text. The learned model generates images that capture the distinctive appearance of different neighborhoods, parks, and landmarks. We also extract 3D models from 2D GPS-to-image models through score distillation sampling, using GPS conditioning to constrain the appearance of the reconstruction from each viewpoint. Our evaluations suggest that our GPS-conditioned models successfully learn to generate images that vary based on location, and that GPS conditioning improves estimated 3D structure.




3D Gaussian Splatting techniques have enabled efficient photo-realistic rendering of static scenes. Recent works have extended these approaches to support surface reconstruction and tracking. However, tracking dynamic surfaces with 3D Gaussians remains challenging due to complex topology changes, such as surfaces appearing, disappearing, or splitting. To address these challenges, we propose GSTAR, a novel method that achieves photo-realistic rendering, accurate surface reconstruction, and reliable 3D tracking for general dynamic scenes with changing topology. Given multi-view captures as input, GSTAR binds Gaussians to mesh faces to represent dynamic objects. For surfaces with consistent topology, GSTAR maintains the mesh topology and tracks the meshes using Gaussians. In regions where topology changes, GSTAR adaptively unbinds Gaussians from the mesh, enabling accurate registration and the generation of new surfaces based on these optimized Gaussians. Additionally, we introduce a surface-based scene flow method that provides robust initialization for tracking between frames. Experiments demonstrate that our method effectively tracks and reconstructs dynamic surfaces, enabling a range of applications. Our project page with the code release is available at https://chengwei-zheng.github.io/GSTAR/.




With the rapid development of digital services, a large volume of personally identifiable information (PII) is stored online and is subject to cyberattacks such as Identity fraud. Most recently, the use of Artificial Intelligence (AI) enabled deep fake technologies has significantly increased the complexity of identity fraud. Fraudsters may use these technologies to create highly sophisticated counterfeit personal identification documents, photos and videos. These advancements in the identity fraud landscape pose challenges for identity fraud detection and society at large. There is a pressing need to review and understand identity fraud detection methods, their limitations and potential solutions. This research aims to address this important need by using the well-known systematic literature review method. This paper reviewed a selected set of 43 papers across 4 major academic literature databases. In particular, the review results highlight the two types of identity fraud prevention and detection methods, in-depth and open challenges. The results were also consolidated into a taxonomy of AI-based identity fraud detection and prevention methods including key insights and trends. Overall, this paper provides a foundational knowledge base to researchers and practitioners for further research and development in this important area of digital identity fraud.




This report introduces Make-A-Character 2, an advanced system for generating high-quality 3D characters from single portrait photographs, ideal for game development and digital human applications. Make-A-Character 2 builds upon its predecessor by incorporating several significant improvements for image-based head generation. We utilize the IC-Light method to correct non-ideal illumination in input photos and apply neural network-based color correction to harmonize skin tones between the photos and game engine renders. We also employ the Hierarchical Representation Network to capture high-frequency facial structures and conduct adaptive skeleton calibration for accurate and expressive facial animations. The entire image-to-3D-character generation process takes less than 2 minutes. Furthermore, we leverage transformer architecture to generate co-speech facial and gesture actions, enabling real-time conversation with the generated character. These technologies have been integrated into our conversational AI avatar products.




Recent advancements in text-to-image generation models have excelled in creating diverse and realistic images. This success extends to food imagery, where various conditional inputs like cooking styles, ingredients, and recipes are utilized. However, a yet-unexplored challenge is generating a sequence of procedural images based on cooking steps from a recipe. This could enhance the cooking experience with visual guidance and possibly lead to an intelligent cooking simulation system. To fill this gap, we introduce a novel task called \textbf{cooking procedural image generation}. This task is inherently demanding, as it strives to create photo-realistic images that align with cooking steps while preserving sequential consistency. To collectively tackle these challenges, we present \textbf{CookingDiffusion}, a novel approach that leverages Stable Diffusion and three innovative Memory Nets to model procedural prompts. These prompts encompass text prompts (representing cooking steps), image prompts (corresponding to cooking images), and multi-modal prompts (mixing cooking steps and images), ensuring the consistent generation of cooking procedural images. To validate the effectiveness of our approach, we preprocess the YouCookII dataset, establishing a new benchmark. Our experimental results demonstrate that our model excels at generating high-quality cooking procedural images with remarkable consistency across sequential cooking steps, as measured by both the FID and the proposed Average Procedure Consistency metrics. Furthermore, CookingDiffusion demonstrates the ability to manipulate ingredients and cooking methods in a recipe. We will make our code, models, and dataset publicly accessible.
The early detection and prediction of health status decline among the elderly at the neighborhood level are of great significance for urban planning and public health policymaking. While existing studies affirm the connection between living environments and health outcomes, most rely on single data modalities or simplistic feature concatenation of multi-modal information, limiting their ability to comprehensively profile the health-oriented urban environments. To fill this gap, we propose CureGraph, a contrastive multi-modal representation learning framework for urban health prediction that employs graph-based techniques to infer the prevalence of common chronic diseases among the elderly within the urban living circles of each neighborhood. CureGraph leverages rich multi-modal information, including photos and textual reviews of residential areas and their surrounding points of interest, to generate urban neighborhood embeddings. By integrating pre-trained visual and textual encoders with graph modeling techniques, CureGraph captures cross-modal spatial dependencies, offering a comprehensive understanding of urban environments tailored to elderly health considerations. Extensive experiments on real-world datasets demonstrate that CureGraph improves the best baseline by $28\%$ on average in terms of $R^2$ across elderly disease risk prediction tasks. Moreover, the model enables the identification of stage-wise chronic disease progression and supports comparative public health analysis across neighborhoods, offering actionable insights for sustainable urban development and enhanced quality of life. The code is publicly available at https://github.com/jinlin2021/CureGraph.
This paper reports on learning a reward map for social navigation in dynamic environments where the robot can reason about its path at any time, given agents' trajectories and scene geometry. Humans navigating in dense and dynamic indoor environments often work with several implied social rules. A rule-based approach fails to model all possible interactions between humans, robots, and scenes. We propose a novel Smooth Maximum Entropy Deep Inverse Reinforcement Learning (S-MEDIRL) algorithm that can extrapolate beyond expert demos to better encode scene navigability from few-shot demonstrations. The agent learns to predict the cost maps reasoning on trajectory data and scene geometry. The agent samples a trajectory that is then executed using a local crowd navigation controller. We present results in a photo-realistic simulation environment, with a robot and a human navigating a narrow crossing scenario. The robot implicitly learns to exhibit social behaviors such as yielding to oncoming traffic and avoiding deadlocks. We compare the proposed approach to the popular model-based crowd navigation algorithm ORCA and a rule-based agent that exhibits yielding.
Curve & Lookup Table (LUT) based methods directly map a pixel to the target output, making them highly efficient tools for real-time photography processing. However, due to extreme memory complexity to learn full RGB space mapping, existing methods either sample a discretized 3D lattice to build a 3D LUT or decompose into three separate curves (1D LUTs) on the RGB channels. Here, we propose a novel algorithm, IAC, to learn an image-adaptive Cartesian coordinate system in the RGB color space before performing curve operations. This end-to-end trainable approach enables us to efficiently adjust images with a jointly learned image-adaptive coordinate system and curves. Experimental results demonstrate that this simple strategy achieves state-of-the-art (SOTA) performance in various photography processing tasks, including photo retouching, exposure correction, and white-balance editing, while also maintaining a lightweight design and fast inference speed.
In recent years, there has been a surge of research focused on underwater image enhancement using Generative Adversarial Networks (GANs), driven by the need to overcome the challenges posed by underwater environments. Issues such as light attenuation, scattering, and color distortion severely degrade the quality of underwater images, limiting their use in critical applications. Generative Adversarial Networks (GANs) have emerged as a powerful tool for enhancing underwater photos due to their ability to learn complex transformations and generate realistic outputs. These advancements have been applied to real-world applications, including marine biology and ecosystem monitoring, coral reef health assessment, underwater archaeology, and autonomous underwater vehicle (AUV) navigation. This paper explores all major approaches to underwater image enhancement, from physical and physics-free models to Convolutional Neural Network (CNN)-based models and state-of-the-art GAN-based methods. It provides a comprehensive analysis of these methods, evaluation metrics, datasets, and loss functions, offering a holistic view of the field. Furthermore, the paper delves into the limitations and challenges faced by current methods, such as generalization issues, high computational demands, and dataset biases, while suggesting potential directions for future research.




Faces and humans are crucial elements in social interaction and are widely included in everyday photos and videos. Therefore, a deep understanding of faces and humans will enable multi-modal assistants to achieve improved response quality and broadened application scope. Currently, the multi-modal assistant community lacks a comprehensive and scientific evaluation of face and human understanding abilities. In this paper, we first propose a hierarchical ability taxonomy that includes three levels of abilities. Then, based on this taxonomy, we collect images and annotations from publicly available datasets in the face and human community and build a semi-automatic data pipeline to produce problems for the new benchmark. Finally, the obtained Face-Human-Bench comprises a development set with 900 problems and a test set with 1800 problems, supporting both English and Chinese. We conduct evaluations over 25 mainstream multi-modal large language models (MLLMs) with our Face-Human-Bench, focusing on the correlation between abilities, the impact of the relative position of targets on performance, and the impact of Chain of Thought (CoT) prompting on performance. Moreover, inspired by multi-modal agents, we also explore which abilities of MLLMs need to be supplemented by specialist models.