Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
The forecasting of multivariate urban data presents a complex challenge due to the intricate dependencies between various urban metrics such as weather, air pollution, carbon intensity, and energy demand. This paper introduces a novel multivariate time-series forecasting model that utilizes advanced Graph Neural Networks (GNNs) to capture spatial dependencies among different time-series variables. The proposed model incorporates a decomposition-based preprocessing step, isolating trend, seasonal, and residual components to enhance the accuracy and interpretability of forecasts. By leveraging the dynamic capabilities of GNNs, the model effectively captures interdependencies and improves the forecasting performance. Extensive experiments on real-world datasets, including electricity usage, weather metrics, carbon intensity, and air pollution data, demonstrate the effectiveness of the proposed approach across various forecasting scenarios. The results highlight the potential of the model to optimize smart infrastructure systems, contributing to energy-efficient urban development and enhanced public well-being.




Time series forecasting is critical across multiple domains, where time series data exhibits both local patterns and global dependencies. While Transformer-based methods effectively capture global dependencies, they often overlook short-term local variations in time series. Recent methods that adapt large language models (LLMs) into time series forecasting inherit this limitation by treating LLMs as black-box encoders, relying solely on the final-layer output and underutilizing hierarchical representations. To address this limitation, we propose Logo-LLM, a novel LLM-based framework that explicitly extracts and models multi-scale temporal features from different layers of a pre-trained LLM. Through empirical analysis, we show that shallow layers of LLMs capture local dynamics in time series, while deeper layers encode global trends. Moreover, Logo-LLM introduces lightweight Local-Mixer and Global-Mixer modules to align and integrate features with the temporal input across layers. Extensive experiments demonstrate that Logo-LLM achieves superior performance across diverse benchmarks, with strong generalization in few-shot and zero-shot settings while maintaining low computational overhead.
Sequential learning -- where complex tasks are broken down into simpler, hierarchical components -- has emerged as a paradigm in AI. This paper views sequential learning through the lens of low-rank linear regression, focusing specifically on how errors propagate when learning rank-1 subspaces sequentially. We present an analysis framework that decomposes the learning process into a series of rank-1 estimation problems, where each subsequent estimation depends on the accuracy of previous steps. Our contribution is a characterization of the error propagation in this sequential process, establishing bounds on how errors -- e.g., due to limited computational budgets and finite precision -- affect the overall model accuracy. We prove that these errors compound in predictable ways, with implications for both algorithmic design and stability guarantees.
Discrete Token Modeling (DTM), which employs vector quantization techniques, has demonstrated remarkable success in modeling non-natural language modalities, particularly in time series generation. While our prior work SDformer established the first DTM-based framework to achieve state-of-the-art performance in this domain, two critical limitations persist in existing DTM approaches: 1) their inability to capture multi-scale temporal patterns inherent to complex time series data, and 2) the absence of theoretical foundations to guide model optimization. To address these challenges, we proposes a novel multi-scale DTM-based time series generation method, called Multi-Scale Discrete Transformer (MSDformer). MSDformer employs a multi-scale time series tokenizer to learn discrete token representations at multiple scales, which jointly characterize the complex nature of time series data. Subsequently, MSDformer applies a multi-scale autoregressive token modeling technique to capture the multi-scale patterns of time series within the discrete latent space. Theoretically, we validate the effectiveness of the DTM method and the rationality of MSDformer through the rate-distortion theorem. Comprehensive experiments demonstrate that MSDformer significantly outperforms state-of-the-art methods. Both theoretical analysis and experimental results demonstrate that incorporating multi-scale information and modeling multi-scale patterns can substantially enhance the quality of generated time series in DTM-based approaches. The code will be released upon acceptance.
Time series forecasting plays a critical role in domains such as energy, finance, and healthcare, where accurate predictions inform decision-making under uncertainty. Although Transformer-based models have demonstrated success in sequential modeling, their adoption for time series remains limited by challenges such as noise sensitivity, long-range dependencies, and a lack of inductive bias for temporal structure. In this work, we present a unified and principled framework for benchmarking three prominent Transformer forecasting architectures-Autoformer, Informer, and Patchtst-each evaluated through three architectural variants: Minimal, Standard, and Full, representing increasing levels of complexity and modeling capacity. We conduct over 1500 controlled experiments on a suite of ten synthetic signals, spanning five patch lengths and five forecast horizons under both clean and noisy conditions. Our analysis reveals consistent patterns across model families. To advance this landscape further, we introduce the Koopman-enhanced Transformer framework, Deep Koopformer, which integrates operator-theoretic latent state modeling to improve stability and interpretability. We demonstrate its efficacy on nonlinear and chaotic dynamical systems. Our results highlight Koopman based Transformer as a promising hybrid approach for robust, interpretable, and theoretically grounded time series forecasting in noisy and complex real-world conditions.
The present study explores the interpretability of latent spaces produced by time series foundation models, focusing on their potential for visual analysis tasks. Specifically, we evaluate the MOMENT family of models, a set of transformer-based, pre-trained architectures for multivariate time series tasks such as: imputation, prediction, classification, and anomaly detection. We evaluate the capacity of these models on five datasets to capture the underlying structures in time series data within their latent space projection and validate whether fine tuning improves the clarity of the resulting embedding spaces. Notable performance improvements in terms of loss reduction were observed after fine tuning. Visual analysis shows limited improvement in the interpretability of the embeddings, requiring further work. Results suggest that, although Time Series Foundation Models such as MOMENT are robust, their latent spaces may require additional methodological refinements to be adequately interpreted, such as alternative projection techniques, loss functions, or data preprocessing strategies. Despite the limitations of MOMENT, foundation models supose a big reduction in execution time and so a great advance for interactive visual analytics.
Time series forecasting plays a crucial role in various fields, and the methods based on frequency domain analysis have become an important branch. However, most existing studies focus on the design of elaborate model architectures and are often tailored for limited datasets, still lacking universality. Besides, the assumption of independent and identically distributed (IID) data also contradicts the strong correlation of the time domain labels. To address these issues, abandoning time domain supervision, we propose a purely frequency domain supervision approach named cross-dimensional frequency (X-Freq) loss. Specifically, based on a statistical phenomenon, we first prove that the information entropy of the time series is higher than its spectral entropy, which implies higher certainty in frequency domain and thus can provide better supervision. Secondly, the Fourier Transform and the Wavelet Transform are applied to the time dimension and the channel dimension of the time series respectively, to capture the long-term and short-term frequency variations as well as the spatial configuration features. Thirdly, the loss between predictions and targets is uniformly computed in the frequency domain. Moreover, we plug-and-play incorporate X-Freq into multiple advanced forecasting models and compare on 14 real-world datasets. The experimental results demonstrate that, without making any modification to the original architectures or hyperparameters, X-Freq can improve the forecasting performance by an average of 3.3% on long-term forecasting datasets and 27.7% on short-term ones, showcasing superior generality and practicality. The code will be released publicly.
State-space models (SSMs), particularly the Mamba architecture, have emerged as powerful alternatives to Transformers for sequence modeling, offering linear-time complexity and competitive performance across diverse tasks. However, their large parameter counts pose significant challenges for deployment in resource-constrained environments. We propose a novel unstructured pruning framework tailored for Mamba models that achieves up to 70\% parameter reduction while retaining over 95\% of the original performance. Our approach integrates three key innovations: (1) a gradient-aware magnitude pruning technique that combines weight magnitude and gradient information to identify less critical parameters, (2) an iterative pruning schedule that gradually increases sparsity to maintain model stability, and (3) a global pruning strategy that optimizes parameter allocation across the entire model. Through extensive experiments on WikiText-103, Long Range Arena, and ETT time-series benchmarks, we demonstrate significant efficiency gains with minimal performance degradation. Our analysis of pruning effects on Mamba's components reveals critical insights into the architecture's redundancy and robustness, enabling practical deployment in resource-constrained settings while broadening Mamba's applicability.
Time series imputation is one of the most challenge problems and has broad applications in various fields like health care and the Internet of Things. Existing methods mainly aim to model the temporally latent dependencies and the generation process from the observed time series data. In real-world scenarios, different types of missing mechanisms, like MAR (Missing At Random), and MNAR (Missing Not At Random) can occur in time series data. However, existing methods often overlook the difference among the aforementioned missing mechanisms and use a single model for time series imputation, which can easily lead to misleading results due to mechanism mismatching. In this paper, we propose a framework for time series imputation problem by exploring Different Missing Mechanisms (DMM in short) and tailoring solutions accordingly. Specifically, we first analyze the data generation processes with temporal latent states and missing cause variables for different mechanisms. Sequentially, we model these generation processes via variational inference and estimate prior distributions of latent variables via normalizing flow-based neural architecture. Furthermore, we establish identifiability results under the nonlinear independent component analysis framework to show that latent variables are identifiable. Experimental results show that our method surpasses existing time series imputation techniques across various datasets with different missing mechanisms, demonstrating its effectiveness in real-world applications.
The cross-Modality Domain Adaptation (crossMoDA) challenge series, initiated in 2021 in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), focuses on unsupervised cross-modality segmentation, learning from contrast-enhanced T1 (ceT1) and transferring to T2 MRI. The task is an extreme example of domain shift chosen to serve as a meaningful and illustrative benchmark. From a clinical application perspective, it aims to automate Vestibular Schwannoma (VS) and cochlea segmentation on T2 scans for more cost-effective VS management. Over time, the challenge objectives have evolved to enhance its clinical relevance. The challenge evolved from using single-institutional data and basic segmentation in 2021 to incorporating multi-institutional data and Koos grading in 2022, and by 2023, it included heterogeneous routine data and sub-segmentation of intra- and extra-meatal tumour components. In this work, we report the findings of the 2022 and 2023 editions and perform a retrospective analysis of the challenge progression over the years. The observations from the successive challenge contributions indicate that the number of outliers decreases with an expanding dataset. This is notable since the diversity of scanning protocols of the datasets concurrently increased. The winning approach of the 2023 edition reduced the number of outliers on the 2021 and 2022 testing data, demonstrating how increased data heterogeneity can enhance segmentation performance even on homogeneous data. However, the cochlea Dice score declined in 2023, likely due to the added complexity from tumour sub-annotations affecting overall segmentation performance. While progress is still needed for clinically acceptable VS segmentation, the plateauing performance suggests that a more challenging cross-modal task may better serve future benchmarking.