Abstract:Recent trends are emerging in the use of Large Language Models (LLMs) as autonomous agents that take actions based on the content of the user text prompt. This study explores the use of fine-tuned Large Language Models (LLMs) for autonomous spacecraft control, using the Kerbal Space Program Differential Games suite (KSPDG) as a testing environment. Traditional Reinforcement Learning (RL) approaches face limitations in this domain due to insufficient simulation capabilities and data. By leveraging LLMs, specifically fine-tuning models like GPT-3.5 and LLaMA, we demonstrate how these models can effectively control spacecraft using language-based inputs and outputs. Our approach integrates real-time mission telemetry into textual prompts processed by the LLM, which then generate control actions via an agent. The results open a discussion about the potential of LLMs for space operations beyond their nominal use for text-related tasks. Future work aims to expand this methodology to other space control tasks and evaluate the performance of different LLM families. The code is available at this URL: \texttt{https://github.com/ARCLab-MIT/kspdg}.
Abstract:Visual analytics is essential for studying large time series due to its ability to reveal trends, anomalies, and insights. DeepVATS is a tool that merges Deep Learning (Deep) with Visual Analytics (VA) for the analysis of large time series data (TS). It has three interconnected modules. The Deep Learning module, developed in R, manages the load of datasets and Deep Learning models from and to the Storage module. This module also supports models training and the acquisition of the embeddings from the latent space of the trained model. The Storage module operates using the Weights and Biases system. Subsequently, these embeddings can be analyzed in the Visual Analytics module. This module, based on an R Shiny application, allows the adjustment of the parameters related to the projection and clustering of the embeddings space. Once these parameters are set, interactive plots representing both the embeddings, and the time series are shown. This paper introduces the tool and examines its scalability through log analytics. The execution time evolution is examined while the length of the time series is varied. This is achieved by resampling a large data series into smaller subsets and logging the main execution and rendering times for later analysis of scalability.
Abstract:The Three-Body Problem has fascinated scientists for centuries and it has been crucial in the design of modern space missions. Recent developments in Generative Artificial Intelligence hold transformative promise for addressing this longstanding problem. This work investigates the use of Variational Autoencoder (VAE) and its internal representation to generate periodic orbits. We utilize a comprehensive dataset of periodic orbits in the Circular Restricted Three-Body Problem (CR3BP) to train deep-learning architectures that capture key orbital characteristics, and we set up physical evaluation metrics for the generated trajectories. Through this investigation, we seek to enhance the understanding of how Generative AI can improve space mission planning and astrodynamics research, leading to novel, data-driven approaches in the field.
Abstract:In this work, we develop a comprehensive framework for F10.7, S10.7, M10.7, and Y10.7 solar driver forecasting with a time series Transformer (PatchTST). To ensure an equal representation of high and low levels of solar activity, we construct a custom loss function to weight samples based on the distance between the solar driver's historical distribution and the training set. The solar driver forecasting framework includes an 18-day lookback window and forecasts 6 days into the future. When benchmarked against the Space Environment Technologies (SET) dataset, our model consistently produces forecasts with a lower standard mean error in nearly all cases, with improved prediction accuracy during periods of high solar activity. All the code is available on Github https://github.com/ARCLab-MIT/sw-driver-forecaster.
Abstract:Recent trends are emerging in the use of Large Language Models (LLMs) as autonomous agents that take actions based on the content of the user text prompts. We intend to apply these concepts to the field of Guidance, Navigation, and Control in space, enabling LLMs to have a significant role in the decision-making process for autonomous satellite operations. As a first step towards this goal, we have developed a pure LLM-based solution for the Kerbal Space Program Differential Games (KSPDG) challenge, a public software design competition where participants create autonomous agents for maneuvering satellites involved in non-cooperative space operations, running on the KSP game engine. Our approach leverages prompt engineering, few-shot prompting, and fine-tuning techniques to create an effective LLM-based agent that ranked 2nd in the competition. To the best of our knowledge, this work pioneers the integration of LLM agents into space research. Code is available at https://github.com/ARCLab-MIT/kspdg.
Abstract:Over the last decade, Unmanned Aerial Vehicles (UAVs) have been extensively used in many commercial applications due to their manageability and risk avoidance. One of the main problems considered is the Mission Planning for multiple UAVs, where a solution plan must be found satisfying the different constraints of the problem. This problem has multiple variables that must be optimized simultaneously, such as the makespan, the cost of the mission or the risk. Therefore, the problem has a lot of possible optimal solutions, and the operator must select the final solution to be executed among them. In order to reduce the workload of the operator in this decision process, a Decision Support System (DSS) becomes necessary. In this work, a DSS consisting of ranking and filtering systems, which order and reduce the optimal solutions, has been designed. With regard to the ranking system, a wide range of Multi-Criteria Decision Making (MCDM) methods, including some fuzzy MCDM, are compared on a multi-UAV mission planning scenario, in order to study which method could fit better in a multi-UAV decision support system. Expert operators have evaluated the solutions returned, and the results show, on the one hand, that fuzzy methods generally achieve better average scores, and on the other, that all of the tested methods perform better when the preferences of the operators are biased towards a specific variable, and worse when their preferences are balanced. For the filtering system, a similarity function based on the proximity of the solutions has been designed, and on top of that, a threshold is tuned empirically to decide how to filter solutions without losing much of the hypervolume of the space of solutions.
Abstract:With the rapid increase in the number of Anthropogenic Space Objects (ASOs), Low Earth Orbit (LEO) is facing significant congestion, thereby posing challenges to space operators and risking the viability of the space environment for varied uses. Current models for examining this evolution, while detailed, are computationally demanding. To address these issues, we propose a novel machine learning-based model, as an extension of the MIT Orbital Capacity Tool (MOCAT). This advanced model is designed to accelerate the propagation of ASO density distributions, and it is trained on hundreds of simulations generated by an established and accurate model of the space environment evolution. We study how different deep learning-based solutions can potentially be good candidates for ASO propagation and manage the high-dimensionality of the data. To assess the model's capabilities, we conduct experiments in long term forecasting scenarios (around 100 years), analyze how and why the performance degrades over time, and discuss potential solutions to make this solution better.
Abstract:This paper presents a novel methodology for improving the performance of machine learning based space traffic management tasks through the use of a pre-trained orbit model. Taking inspiration from BERT-like self-supervised language models in the field of natural language processing, we introduce ORBERT, and demonstrate the ability of such a model to leverage large quantities of readily available orbit data to learn meaningful representations that can be used to aid in downstream tasks. As a proof of concept of this approach we consider the task of all vs. all conjunction screening, phrased here as a machine learning time series classification task. We show that leveraging unlabelled orbit data leads to improved performance, and that the proposed approach can be particularly beneficial for tasks where the availability of labelled data is limited.
Abstract:As the peak of the solar cycle approaches in 2025 and the ability of a single geomagnetic storm to significantly alter the orbit of Resident Space Objects (RSOs), techniques for atmospheric density forecasting are vital for space situational awareness. While linear data-driven methods, such as dynamic mode decomposition with control (DMDc), have been used previously for forecasting atmospheric density, deep learning-based forecasting has the ability to capture nonlinearities in data. By learning multiple layer weights from historical atmospheric density data, long-term dependencies in the dataset are captured in the mapping between the current atmospheric density state and control input to the atmospheric density state at the next timestep. This work improves upon previous linear propagation methods for atmospheric density forecasting, by developing a nonlinear transformer-based architecture for atmospheric density forecasting. Empirical NRLMSISE-00 and JB2008, as well as physics-based TIEGCM atmospheric density models are compared for forecasting with DMDc and with the transformer-based propagator.
Abstract:The field of Deep Visual Analytics (DVA) has recently arisen from the idea of developing Visual Interactive Systems supported by deep learning techniques, in order to provide them with large-scale data processing capabilities and to unify their implementation across different data modalities and domains of application. In this paper we present DeepVATS, an open-source tool that brings the field of DVA into time series data. DeepVATS trains, in a self-supervised way, a masked time series autoencoder that reconstructs patches of a time series, and projects the knowledge contained in the embeddings of that model in an interactive plot, from which time series patterns and anomalies emerge and can be easily spotted. The tool has been tested on both synthetic and real datasets, and its code is publicly available on https://github.com/vrodriguezf/deepvats