



This paper focuses on the task of speech-driven 3D facial animation, which aims to generate realistic and synchronized facial motions driven by speech inputs. Recent methods have employed audio-conditioned diffusion models for 3D facial animation, achieving impressive results in generating expressive and natural animations. However, these methods process the whole audio sequences in a single pass, which poses two major challenges: they tend to perform poorly when handling audio sequences that exceed the training horizon and will suffer from significant latency when processing long audio inputs. To address these limitations, we propose a novel autoregressive diffusion model that processes input audio in a streaming manner. This design ensures flexibility with varying audio lengths and achieves low latency independent of audio duration. Specifically, we select a limited number of past frames as historical motion context and combine them with the audio input to create a dynamic condition. This condition guides the diffusion process to iteratively generate facial motion frames, enabling real-time synthesis with high-quality results. Additionally, we implemented a real-time interactive demo, highlighting the effectiveness and efficiency of our approach. We will release the code at https://zju3dv.github.io/StreamingTalker/.
Generating expressive and controllable human speech is one of the core goals of generative artificial intelligence, but its progress has long been constrained by two fundamental challenges: the deep entanglement of speech factors and the coarse granularity of existing control mechanisms. To overcome these challenges, we have proposed a novel framework called MF-Speech, which consists of two core components: MF-SpeechEncoder and MF-SpeechGenerator. MF-SpeechEncoder acts as a factor purifier, adopting a multi-objective optimization strategy to decompose the original speech signal into highly pure and independent representations of content, timbre, and emotion. Subsequently, MF-SpeechGenerator functions as a conductor, achieving precise, composable and fine-grained control over these factors through dynamic fusion and Hierarchical Style Adaptive Normalization (HSAN). Experiments demonstrate that in the highly challenging multi-factor compositional speech generation task, MF-Speech significantly outperforms current state-of-the-art methods, achieving a lower word error rate (WER=4.67%), superior style control (SECS=0.5685, Corr=0.68), and the highest subjective evaluation scores(nMOS=3.96, sMOS_emotion=3.86, sMOS_style=3.78). Furthermore, the learned discrete factors exhibit strong transferability, demonstrating their significant potential as a general-purpose speech representation.
The law draws a sharp distinction between objects and persons, and between two kinds of persons, the ''fictional'' kind (i.e. corporations), and the ''non-fictional'' kind (individual or ''natural'' persons). This paper will assess whether we maximize overall long-term legal coherence by (A) maintaining an object classification for all future AI systems, (B) creating fictional legal persons associated with suitably advanced, individuated AI systems (giving these fictional legal persons derogable rights and duties associated with certified groups of existing persons, potentially including free speech, contract rights, and standing to sue ''on behalf of'' the AI system), or (C) recognizing non-fictional legal personhood through legal identity for suitably advanced, individuated AI systems (recognizing them as entities meriting legal standing with non-derogable rights which for the human case include life, due process, habeas corpus, freedom from slavery, and freedom of conscience). We will clarify the meaning and implications of each option along the way, considering liability, copyright, family law, fundamental rights, civil rights, citizenship, and AI safety regulation. We will tentatively find that the non-fictional personhood approach may be best from a coherence perspective, for at least some advanced AI systems. An object approach may prove untenable for sufficiently humanoid advanced systems, though we suggest that it is adequate for currently existing systems as of 2025. While fictional personhood would resolve some coherence issues for future systems, it would create others and provide solutions that are neither durable nor fit for purpose. Finally, our review will suggest that ''hybrid'' approaches are likely to fail and lead to further incoherence: the choice between object, fictional person and non-fictional person is unavoidable.
Achieving a balance between lightweight design and high performance remains a significant challenge for speech enhancement (SE) tasks on resource-constrained devices. Existing state-of-the-art methods, such as MUSE, have established a strong baseline with only 0.51M parameters by introducing a Multi-path Enhanced Taylor (MET) transformer and Deformable Embedding (DE). However, an in-depth analysis reveals that MUSE still suffers from efficiency bottlenecks: the MET module relies on a complex "approximate-compensate" mechanism to mitigate the limitations of Taylor-expansion-based attention, while the offset calculation for deformable embedding introduces additional computational burden. This paper proposes IMSE, a systematically optimized and ultra-lightweight network. We introduce two core innovations: 1) Replacing the MET module with Amplitude-Aware Linear Attention (MALA). MALA fundamentally rectifies the "amplitude-ignoring" problem in linear attention by explicitly preserving the norm information of query vectors in the attention calculation, achieving efficient global modeling without an auxiliary compensation branch. 2) Replacing the DE module with Inception Depthwise Convolution (IDConv). IDConv borrows the Inception concept, decomposing large-kernel operations into efficient parallel branches (square, horizontal, and vertical strips), thereby capturing spectrogram features with extremely low parameter redundancy. Extensive experiments on the VoiceBank+DEMAND dataset demonstrate that, compared to the MUSE baseline, IMSE significantly reduces the parameter count by 16.8\% (from 0.513M to 0.427M) while achieving competitive performance comparable to the state-of-the-art on the PESQ metric (3.373). This study sets a new benchmark for the trade-off between model size and speech quality in ultra-lightweight speech enhancement.




Historical and low-resource NLP remains challenging due to limited annotated data and domain mismatches with modern, web-sourced corpora. This paper outlines our work in using large language models (LLMs) to create ground-truth annotations for historical French (16th-20th centuries) and Chinese (1900-1950) texts. By leveraging LLM-generated ground truth on a subset of our corpus, we were able to fine-tune spaCy to achieve significant gains on period-specific tests for part-of-speech (POS) annotations, lemmatization, and named entity recognition (NER). Our results underscore the importance of domain-specific models and demonstrate that even relatively limited amounts of synthetic data can improve NLP tools for under-resourced corpora in computational humanities research.
The automatic movie dubbing model generates vivid speech from given scripts, replicating a speaker's timbre from a brief timbre prompt while ensuring lip-sync with the silent video. Existing approaches simulate a simplified workflow where actors dub directly without preparation, overlooking the critical director-actor interaction. In contrast, authentic workflows involve a dynamic collaboration: directors actively engage with actors, guiding them to internalize the context cues, specifically emotion, before performance. To address this issue, we propose a new Retrieve-Augmented Director-Actor Interaction Learning scheme to achieve authentic movie dubbing, termed Authentic-Dubber, which contains three novel mechanisms: (1) We construct a multimodal Reference Footage library to simulate the learning footage provided by directors. Note that we integrate Large Language Models (LLMs) to achieve deep comprehension of emotional representations across multimodal signals. (2) To emulate how actors efficiently and comprehensively internalize director-provided footage during dubbing, we propose an Emotion-Similarity-based Retrieval-Augmentation strategy. This strategy retrieves the most relevant multimodal information that aligns with the target silent video. (3) We develop a Progressive Graph-based speech generation approach that incrementally incorporates the retrieved multimodal emotional knowledge, thereby simulating the actor's final dubbing process. The above mechanisms enable the Authentic-Dubber to faithfully replicate the authentic dubbing workflow, achieving comprehensive improvements in emotional expressiveness. Both subjective and objective evaluations on the V2C Animation benchmark dataset validate the effectiveness. The code and demos are available at https://github.com/AI-S2-Lab/Authentic-Dubber.
Speech-LLM models have demonstrated great performance in multi-modal and multi-task speech understanding. A typical speech-LLM paradigm is integrating speech modality with a large language model (LLM). While the Whisper encoder was frequently adopted in previous studies for speech input, it shows limitations regarding input format, model scale, and semantic performance. To this end, we propose a lightweight TTA model specialized in speech semantics for more effective LLM integration. With large-scale training of 358k hours of speech data on multilingual speech recognition (ASR), speech translation (ST) and speech-text alignment tasks, TTA is capable of producing robust cross-lingual speech representations. Extensive evaluations across diverse benchmarks, including ASR/ST, speech retrieval, and ASR-LLM performance assessments, demonstrate TTA's superiority over Whisper. Furthermore, we rigorously validate the interplay between cross-lingual capabilities and ASR/ST performance. The model weights and training recipes of TTA will be released as part of an audio understanding toolkit Auden.
Kolmogorov-Arnold Networks (KANs) promise higher expressive capability and stronger interpretability than Multi-Layer Perceptron, particularly in the domain of AI for Science. However, practical adoption has been hindered by low GPU utilization of existing parallel implementations. To address this challenge, we present a GPU-accelerated operator library, named PolyKAN which is the first general open-source implementation of KAN and its variants. PolyKAN fuses the forward and backward passes of polynomial KAN layers into a concise set of optimized CUDA kernels. Four orthogonal techniques underpin the design: (i) \emph{lookup-table} with linear interpolation that replaces runtime expensive math-library functions; (ii) \emph{2D tiling} to expose thread-level parallelism with preserving memory locality; (iii) a \emph{two-stage reduction} scheme converting scattered atomic updates into a single controllable merge step; and (iv) \emph{coefficient-layout reordering} yielding unit-stride reads under the tiled schedule. Using a KAN variant, Chebyshev KAN, as a case-study, PolyKAN delivers $1.2$--$10\times$ faster inference and $1.4$--$12\times$ faster training than a Triton + cuBLAS baseline, with identical accuracy on speech, audio-enhancement, and tabular-regression workloads on both highend GPU and consumer-grade GPU.
Recent advances in expressive text-to-speech (TTS) have introduced diverse methods based on style embedding extracted from reference speech. However, synthesizing high-quality expressive speech remains challenging. We propose SpotlightTTS, which exclusively emphasizes style via voiced-aware style extraction and style direction adjustment. Voiced-aware style extraction focuses on voiced regions highly related to style while maintaining continuity across different speech regions to improve expressiveness. We adjust the direction of the extracted style for optimal integration into the TTS model, which improves speech quality. Experimental results demonstrate that Spotlight-TTS achieves superior performance compared to baseline models in terms of expressiveness, overall speech quality, and style transfer capability.
Recent advances in speech-enabled AI, including Google's NotebookLM and OpenAI's speech-to-speech API, are driving widespread interest in voice interfaces globally. Despite this momentum, there exists no publicly available application-specific model evaluation that caters to Africa's linguistic diversity. We present AfriSpeech-MultiBench, the first domain-specific evaluation suite for over 100 African English accents across 10+ countries and seven application domains: Finance, Legal, Medical, General dialogue, Call Center, Named Entities and Hallucination Robustness. We benchmark a diverse range of open, closed, unimodal ASR and multimodal LLM-based speech recognition systems using both spontaneous and non-spontaneous speech conversation drawn from various open African accented English speech datasets. Our empirical analysis reveals systematic variation: open-source ASR models excels in spontaneous speech contexts but degrades on noisy, non-native dialogue; multimodal LLMs are more accent-robust yet struggle with domain-specific named entities; proprietary models deliver high accuracy on clean speech but vary significantly by country and domain. Models fine-tuned on African English achieve competitive accuracy with lower latency, a practical advantage for deployment, hallucinations still remain a big problem for most SOTA models. By releasing this comprehensive benchmark, we empower practitioners and researchers to select voice technologies suited to African use-cases, fostering inclusive voice applications for underserved communities.