Recent benchmarks evaluating pre-trained models (PTMs) for cross-corpus speech emotion recognition (SER) have overlooked PTM pre-trained for paralinguistic speech processing (PSP), raising concerns about their reliability, since SER is inherently a paralinguistic task. We hypothesize that PSP-focused PTM will perform better in cross-corpus SER settings. To test this, we analyze state-of-the-art PTMs representations including paralinguistic, monolingual, multilingual, and speaker recognition. Our results confirm that TRILLsson (a paralinguistic PTM) outperforms others, reinforcing the need to consider PSP-focused PTMs in cross-corpus SER benchmarks. This study enhances benchmark trustworthiness and guides PTMs evaluations for reliable cross-corpus SER.
In this work, we investigate multimodal foundation models (MFMs) for EmoFake detection (EFD) and hypothesize that they will outperform audio foundation models (AFMs). MFMs due to their cross-modal pre-training, learns emotional patterns from multiple modalities, while AFMs rely only on audio. As such, MFMs can better recognize unnatural emotional shifts and inconsistencies in manipulated audio, making them more effective at distinguishing real from fake emotional expressions. To validate our hypothesis, we conduct a comprehensive comparative analysis of state-of-the-art (SOTA) MFMs (e.g. LanguageBind) alongside AFMs (e.g. WavLM). Our experiments confirm that MFMs surpass AFMs for EFD. Beyond individual foundation models (FMs) performance, we explore FMs fusion, motivated by findings in related research areas such synthetic speech detection and speech emotion recognition. To this end, we propose SCAR, a novel framework for effective fusion. SCAR introduces a nested cross-attention mechanism, where representations from FMs interact at two stages sequentially to refine information exchange. Additionally, a self-attention refinement module further enhances feature representations by reinforcing important cross-FM cues while suppressing noise. Through SCAR with synergistic fusion of MFMs, we achieve SOTA performance, surpassing both standalone FMs and conventional fusion approaches and previous works on EFD.
The steered response power (SRP) method is one of the most popular approaches for acoustic source localization with microphone arrays. It is often based on simplifying acoustic assumptions, such as an omnidirectional sound source in the far field of the microphone array(s), free field propagation, and spatially uncorrelated noise. In reality, however, there are many acoustic scenarios where such assumptions are violated. This paper proposes a generalization of the conventional SRP method that allows to apply generic acoustic models for localization with arbitrary microphone constellations. These models may consider, for instance, level differences in distributed microphones, the directivity of sources and receivers, or acoustic shadowing effects. Moreover, also measured acoustic transfer functions may be applied as acoustic model. We show that the delay-and-sum beamforming of the conventional SRP is not optimal for localization with generic acoustic models. To this end, we propose a generalized SRP beamforming criterion that considers generic acoustic models and spatially correlated noise, and derive an optimal SRP beamformer. Furthermore, we propose and analyze appropriate frequency weightings. Unlike the conventional SRP, the proposed method can jointly exploit observed level and time differences between the microphone signals to infer the source location. Realistic simulations of three different microphone setups with speech under various noise conditions indicate that the proposed method can significantly reduce the mean localization error compared to the conventional SRP and, in particular, a reduction of more than 60% can be archived in noisy conditions.




Simultaneous speech-to-text translation (Simul-S2TT) aims to translate speech into target text in real time, outputting translations while receiving source speech input, rather than waiting for the entire utterance to be spoken. Simul-S2TT research often modifies model architectures to implement read-write strategies. However, with the rise of large audio-language models (LALMs), a key challenge is how to directly activate Simul-S2TT capabilities in base models without additional architectural changes. In this paper, we introduce {\bf Simul}taneous {\bf S}elf-{\bf A}ugmentation ({\bf SimulSA}), a strategy that utilizes LALMs' inherent capabilities to obtain simultaneous data by randomly truncating speech and constructing partially aligned translation. By incorporating them into offline SFT data, SimulSA effectively bridges the distribution gap between offline translation during pretraining and simultaneous translation during inference. Experimental results demonstrate that augmenting only about {\bf 1\%} of the simultaneous data, compared to the full offline SFT data, can significantly activate LALMs' Simul-S2TT capabilities without modifications to model architecture or decoding strategy.
Personalizing Automatic Speech Recognition (ASR) for dysarthric speech is crucial but challenging due to training and storing of individual user adapters. We propose a hybrid meta-training method for a single model, excelling in zero-shot and few-shot on-the-fly personalization via in-context learning (ICL). Measuring Word Error Rate (WER) on state-of-the-art subsets, the model achieves 13.9% WER on Euphonia which surpasses speaker-independent baselines (17.5% WER) and rivals user-specific personalized models. On SAP Test 1, its 5.3% WER significantly bests the 8% from even personalized adapters. We also demonstrate the importance of example curation, where an oracle text-similarity method shows 5 curated examples can achieve performance similar to 19 randomly selected ones, highlighting a key area for future efficiency gains. Finally, we conduct data ablations to measure the data efficiency of this approach. This work presents a practical, scalable, and personalized solution.
Visual speech recognition (VSR), also known as lip reading, is the task of recognizing speech from silent video. Despite significant advancements in VSR over recent decades, most existing methods pay limited attention to real-world visual challenges such as illumination variations, occlusions, blurring, and pose changes. To address these challenges, we propose GLip, a Global-Local Integrated Progressive framework designed for robust VSR. GLip is built upon two key insights: (i) learning an initial \textit{coarse} alignment between visual features across varying conditions and corresponding speech content facilitates the subsequent learning of \textit{precise} visual-to-speech mappings in challenging environments; (ii) under adverse conditions, certain local regions (e.g., non-occluded areas) often exhibit more discriminative cues for lip reading than global features. To this end, GLip introduces a dual-path feature extraction architecture that integrates both global and local features within a two-stage progressive learning framework. In the first stage, the model learns to align both global and local visual features with corresponding acoustic speech units using easily accessible audio-visual data, establishing a coarse yet semantically robust foundation. In the second stage, we introduce a Contextual Enhancement Module (CEM) to dynamically integrate local features with relevant global context across both spatial and temporal dimensions, refining the coarse representations into precise visual-speech mappings. Our framework uniquely exploits discriminative local regions through a progressive learning strategy, demonstrating enhanced robustness against various visual challenges and consistently outperforming existing methods on the LRS2 and LRS3 benchmarks. We further validate its effectiveness on a newly introduced challenging Mandarin dataset.
Although Large Audio-Language Models (LALMs) have exhibited outstanding performance in auditory understanding, their performance in affective computing scenarios, particularly in emotion recognition, reasoning, and subtle sentiment differentiation, remains suboptimal. Recent advances in Reinforcement Learning (RL) have shown promise in improving LALMs' reasoning abilities. However, two critical challenges hinder the direct application of RL techniques to Speech Emotion Recognition (SER) tasks: (1) convergence instability caused by ambiguous emotional boundaries and (2) limited reasoning ability when using relatively small models (e.g., 7B-parameter architectures). To overcome these limitations, we introduce EMO-RL, a novel framework incorporating reinforcement learning with two key innovations: Emotion Similarity-Weighted Reward (ESWR) and Explicit Structured Reasoning (ESR). Built upon pretrained LALMs, our method employs group-relative policy optimization with emotion constraints. Comprehensive experiments demonstrate that our EMO-RL training strategies can significantly enhance the emotional reasoning capabilities of LALMs, attaining state-of-the-art results on both the MELD and IEMOCAP datasets, and cross-dataset experiments prove the strong superiority of generalization.
Large pre-trained speech models excel in downstream tasks but their deployment is impractical for resource-limited environments. In this paper, we introduce HArnESS, the first Arabic-centric self-supervised speech model family, designed to capture Arabic speech nuances. Using iterative self-distillation, we train large bilingual HArnESS (HL) SSL models and then distill knowledge into compressed student models (HS, HST), preserving Arabic-specific representations. We use low-rank approximation to further compact the teacher's discrete supervision into shallow, thin models. We evaluate HArnESS on Arabic ASR, Speaker Emotion Recognition (SER), and Dialect Identification (DID), demonstrating effectiveness against HuBERT and XLS-R. With minimal fine-tuning, HArnESS achieves SOTA or comparable performance, making it a lightweight yet powerful alternative for real-world use. We release our distilled models and findings to support responsible research and deployment in low-resource settings.
True Full-Duplex (TFD) voice communication--enabling simultaneous listening and speaking with natural turn-taking, overlapping speech, and interruptions--represents a critical milestone toward human-like AI interaction. This survey comprehensively reviews Full-Duplex Spoken Language Models (FD-SLMs) in the LLM era. We establish a taxonomy distinguishing Engineered Synchronization (modular architectures) from Learned Synchronization (end-to-end architectures), and unify fragmented evaluation approaches into a framework encompassing Temporal Dynamics, Behavioral Arbitration, Semantic Coherence, and Acoustic Performance. Through comparative analysis of mainstream FD-SLMs, we identify fundamental challenges: synchronous data scarcity, architectural divergence, and evaluation gaps, providing a roadmap for advancing human-AI communication.
Speaker diarization (SD) struggles in real-world scenarios due to dynamic environments and unknown speaker counts. SD is rarely used alone and is often paired with automatic speech recognition (ASR), but non-modular methods that jointly train on domain-specific data have limited flexibility. Moreover, many applications require true speaker identities rather than SD's pseudo labels. We propose a training-free modular pipeline combining off-the-shelf SD, ASR, and a large language model (LLM) to determine who spoke, what was said, and who they are. Using structured LLM prompting on reconciled SD and ASR outputs, our method leverages semantic continuity in conversational context to refine low-confidence speaker labels and assigns role identities while correcting split speakers. On a real-world patient-clinician dataset, our approach achieves a 29.7% relative error reduction over baseline reconciled SD and ASR. It enhances diarization performance without additional training and delivers a complete pipeline for SD, ASR, and speaker identity detection in practical applications.