This paper studies the policy mirror descent (PMD) method, which is a general policy optimization framework in reinforcement learning and can cover a wide range of policy gradient methods by specifying difference mirror maps. Existing sample complexity analysis for policy mirror descent either focuses on the generative sampling model, or the Markovian sampling model but with the action values being explicitly approximated to certain pre-specified accuracy. In contrast, we consider the sample complexity of policy mirror descent with temporal difference (TD) learning under the Markovian sampling model. Two algorithms called Expected TD-PMD and Approximate TD-PMD have been presented, which are off-policy and mixed policy algorithms respectively. Under a small enough constant policy update step size, the $\tilde{O}(\varepsilon^{-2})$ (a logarithm factor about $\varepsilon$ is hidden in $\tilde{O}(\cdot)$) sample complexity can be established for them to achieve average-time $\varepsilon$-optimality. The sample complexity is further improved to $O(\varepsilon^{-2})$ (without the hidden logarithm factor) to achieve the last-iterate $\varepsilon$-optimality based on adaptive policy update step sizes.
Post-deployment machine learning algorithms often influence the environments they act in, and thus shift the underlying dynamics that the standard reinforcement learning (RL) methods ignore. While designing optimal algorithms in this performative setting has recently been studied in supervised learning, the RL counterpart remains under-explored. In this paper, we prove the performative counterparts of the performance difference lemma and the policy gradient theorem in RL, and further introduce the Performative Policy Gradient algorithm (PePG). PePG is the first policy gradient algorithm designed to account for performativity in RL. Under softmax parametrisation, and also with and without entropy regularisation, we prove that PePG converges to performatively optimal policies, i.e. policies that remain optimal under the distribution shifts induced by themselves. Thus, PePG significantly extends the prior works in Performative RL that achieves performative stability but not optimality. Furthermore, our empirical analysis on standard performative RL environments validate that PePG outperforms standard policy gradient algorithms and the existing performative RL algorithms aiming for stability.
Group Relative Policy Optimization (GRPO) has emerged as a promising critic-free reinforcement learning paradigm for reasoning tasks. However, standard GRPO employs a coarse-grained credit assignment mechanism that propagates group-level rewards uniformly to to every token in a sequence, neglecting the varying contribution of individual reasoning steps. We address this limitation by introducing Outcome-grounded Advantage Reshaping (OAR), a fine-grained credit assignment mechanism that redistributes advantages based on how much each token influences the model's final answer. We instantiate OAR via two complementary strategies: (1) OAR-P, which estimates outcome sensitivity through counterfactual token perturbations, serving as a high-fidelity attribution signal; (2) OAR-G, which uses an input-gradient sensitivity proxy to approximate the influence signal with a single backward pass. These importance signals are integrated with a conservative Bi-Level advantage reshaping scheme that suppresses low-impact tokens and boosts pivotal ones while preserving the overall advantage mass. Empirical results on extensive mathematical reasoning benchmarks demonstrate that while OAR-P sets the performance upper bound, OAR-G achieves comparable gains with negligible computational overhead, both significantly outperforming a strong GRPO baseline, pushing the boundaries of critic-free LLM reasoning.
Reinforcement learning drives recent advances in LLM reasoning and agentic capabilities, yet current approaches struggle with both exploration and exploitation. Exploration suffers from low success rates on difficult tasks and high costs of repeated rollouts from scratch. Exploitation suffers from coarse credit assignment and training instability: Trajectory-level rewards penalize valid prefixes for later errors, and failure-dominated groups overwhelm the few positive signals, leaving optimization without constructive direction. To this end, we propose R$^3$L, Reflect-then-Retry Reinforcement Learning with Language-Guided Exploration, Pivotal Credit, and Positive Amplification. To synthesize high-quality trajectories, R$^3$L shifts from stochastic sampling to active synthesis via reflect-then-retry, leveraging language feedback to diagnose errors, transform failed attempts into successful ones, and reduce rollout costs by restarting from identified failure points. With errors diagnosed and localized, Pivotal Credit Assignment updates only the diverging suffix where contrastive signals exist, excluding the shared prefix from gradient update. Since failures dominate on difficult tasks and reflect-then-retry produces off-policy data, risking training instability, Positive Amplification upweights successful trajectories to ensure positive signals guide the optimization process. Experiments on agentic and reasoning tasks demonstrate 5\% to 52\% relative improvements over baselines while maintaining training stability. Our code is released at https://github.com/shiweijiezero/R3L.
High-dimensional design spaces underpin a wide range of physics-based modeling and computational design tasks in science and engineering. These problems are commonly formulated as constrained black-box searches over rugged objective landscapes, where function evaluations are expensive, and gradients are unavailable or unreliable. Conventional global search engines and optimizers struggle in such settings due to the exponential scaling of design spaces, the presence of multiple local basins, and the absence of physical guidance in sampling. We present a physics-informed Monte Carlo Tree Search (MCTS) framework that extends policy-driven tree-based reinforcement concepts to continuous, high-dimensional scientific optimization. Our method integrates population-level decision trees with surrogate-guided directional sampling, reward shaping, and hierarchical switching between global exploration and local exploitation. These ingredients allow efficient traversal of non-convex, multimodal landscapes where physically meaningful optima are sparse. We benchmark our approach against standard global optimization baselines on a suite of canonical test functions, demonstrating superior or comparable performance in terms of convergence, robustness, and generalization. Beyond synthetic tests, we demonstrate physics-consistent applicability to (i) crystal structure optimization from clusters to bulk, (ii) fitting of classical interatomic potentials, and (iii) constrained engineering design problems. Across all cases, the method converges with high fidelity and evaluation efficiency while preserving physical constraints. Overall, our work establishes physics-informed tree search as a scalable and interpretable paradigm for computational design and high-dimensional scientific optimization, bridging discrete decision-making frameworks with continuous search in scientific design workflows.
Reinforcement learning (RL) in safety-critical domains requires agents to maximise rewards while strictly adhering to safety constraints. Existing approaches, such as Lagrangian and projection-based methods, often either fail to ensure near-zero safety violations or sacrifice reward performance in the face of hard constraints. We propose Safety-Biased Trust Region Policy Optimisation (SB-TRPO), a new trust-region algorithm for hard-constrained RL. SB-TRPO adaptively biases policy updates towards constraint satisfaction while still seeking reward improvement. Concretely, it performs trust-region updates using a convex combination of the natural policy gradients of cost and reward, ensuring a fixed fraction of optimal cost reduction at each step. We provide a theoretical guarantee of local progress towards safety, with reward improvement when gradients are suitably aligned. Experiments on standard and challenging Safety Gymnasium tasks show that SB-TRPO consistently achieves the best balance of safety and meaningful task completion compared to state-of-the-art methods.
In this article, we consider an industrial internet of things (IIoT) network supporting multi-device dynamic ultra-reliable low-latency communication (URLLC) while the channel state information (CSI) is imperfect. A joint link adaptation (LA) and device scheduling (including the order) design is provided, aiming at maximizing the total transmission rate under strict block error rate (BLER) constraints. In particular, a Bayesian optimization (BO) driven Twin Delayed Deep Deterministic Policy Gradient (TD3) method is proposed, which determines the device served order sequence and the corresponding modulation and coding scheme (MCS) adaptively based on the imperfect CSI. Note that the imperfection of CSI, error sample imbalance in URLLC networks, as well as the parameter sensitivity nature of the TD3 algorithm likely diminish the algorithm's convergence speed and reliability. To address such an issue, we proposed a BO based training mechanism for the convergence speed improvement, which provides a more reliable learning direction and sample selection method to track the imbalance sample problem. Via extensive simulations, we show that the proposed algorithm achieves faster convergence and higher sum-rate performance compared to existing solutions.
This paper presents a distributed beamforming framework for a constellation of airborne platform stations (APSs) in a massive Multiple-Input and Multiple-Output (MIMO) non-terrestrial network (NTN) that targets the downlink sum-rate maximization under imperfect local channel state information (CSI). We propose a novel entropy-based multi-agent deep reinforcement learning (DRL) approach where each non-terrestrial base station (NTBS) independently computes its beamforming vector using a Fourier Neural Operator (FNO) to capture long-range dependencies in the frequency domain. To ensure scalability and robustness, the proposed framework integrates transfer learning based on a conjugate prior mechanism and a low-rank decomposition (LRD) technique, thus enabling efficient support for large-scale user deployments and aerial layers. Our simulation results demonstrate the superiority of the proposed method over baseline schemes including WMMSE, ZF, MRT, CNN-based DRL, and the deep deterministic policy gradient (DDPG) method in terms of average sum rate, robustness to CSI imperfection, user mobility, and scalability across varying network sizes and user densities. Furthermore, we show that the proposed method achieves significant computational efficiency compared to CNN-based and WMMSE methods, while reducing communication overhead in comparison with shared-critic DRL approaches.
Current critic-free RL methods for large reasoning models suffer from severe inefficiency when training on positive homogeneous prompts (where all rollouts are correct), resulting in waste of rollouts due to zero advantage estimates. We introduce a radically simple yet powerful solution to \uline{M}ine \uline{in}trinsic mast\uline{er}y (Miner), that repurposes the policy's intrinsic uncertainty as a self-supervised reward signal, with no external supervision, auxiliary models, or additional inference cost. Our method pioneers two key innovations: (1) a token-level focal credit assignment mechanism that dynamically amplifies gradients on critical uncertain tokens while suppressing overconfident ones, and (2) adaptive advantage calibration to seamlessly integrate intrinsic and verifiable rewards. Evaluated across six reasoning benchmarks on Qwen3-4B and Qwen3-8B base models, Miner achieves state-of-the-art performance among the other four algorithms, yielding up to \textbf{4.58} absolute gains in Pass@1 and \textbf{6.66} gains in Pass@K compared to GRPO. Comparison with other methods targeted at exploration enhancement further discloses the superiority of the two newly proposed innovations. This demonstrates that latent uncertainty exploitation is both necessary and sufficient for efficient and scalable RL training of reasoning models.
Policy gradient methods for large language models optimize a surrogate objective computed from samples of a rollout policy $π_{\text{roll}}$. When $π_{\text{roll}} \ne π_θ$, there is approximation error between the surrogate and the true objective. Prior work has shown that this off-policy mismatch is unavoidable in modern LLM-RL due to implementation divergence, mixture-of-experts routing discontinuities, and distributed training staleness. Classical trust region bounds on the resulting error scale as $O(T^2)$ with sequence length $T$, rendering them vacuous for long-horizon tasks. We derive two tighter bounds: a Pinsker-Marginal bound scaling as $O(T^{3/2})$ and a Mixed bound scaling as $O(T)$. Crucially, both bounds depend on $D_{kl}^{tok,max}$ -- the maximum token-level KL divergence across all positions in a sequence. This is inherently a sequence-level quantity: it requires examining the entire trajectory to compute, and therefore cannot be controlled by token-independent methods like PPO clipping. We propose Trust Region Masking (TRM), which excludes entire sequences from gradient computation if any token violates the trust region, providing the first non-vacuous monotonic improvement guarantees for long-horizon LLM-RL.