Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
With the rapid advancement of Multimodal Large Language Models (MLLMs), their potential has garnered significant attention in Chinese Classical Studies (CCS). While existing research has primarily focused on text and visual modalities, the audio corpus within this domain remains largely underexplored. To bridge this gap, we propose the Multi-task Classical Chinese Literary Genre Audio Corpus (MCGA). It encompasses a diverse range of literary genres across six tasks: Automatic Speech Recognition (ASR), Speech-to-Text Translation (S2TT), Speech Emotion Captioning (SEC), Spoken Question Answering (SQA), Speech Understanding (SU), and Speech Reasoning (SR). Through the evaluation of ten MLLMs, our experimental results demonstrate that current models still face substantial challenges when processed on the MCGA test set. Furthermore, we introduce an evaluation metric for SEC and a metric to measure the consistency between the speech and text capabilities of MLLMs. We release MCGA and our code to the public to facilitate the development of MLLMs with more robust multidimensional audio capabilities in CCS. MCGA Corpus: https://github.com/yxduir/MCGA
In speech language modeling, two architectures dominate the frontier: the Transformer and the Conformer. However, it remains unknown whether their comparable performance stems from convergent processing strategies or distinct architectural inductive biases. We introduce Architectural Fingerprinting, a probing framework that isolates the effect of architecture on representation, and apply it to a controlled suite of 24 pre-trained encoders (39M-3.3B parameters). Our analysis reveals divergent hierarchies: Conformers implement a "Categorize Early" strategy, resolving phoneme categories 29% earlier in depth and speaker gender by 16% depth. In contrast, Transformers "Integrate Late," deferring phoneme, accent, and duration encoding to deep layers (49-57%). These fingerprints suggest design heuristics: Conformers' front-loaded categorization may benefit low-latency streaming, while Transformers' deep integration may favor tasks requiring rich context and cross-utterance normalization.
Learning representative embeddings for different types of speaking styles, such as emotion, age, and gender, is critical for both recognition tasks (e.g., cognitive computing and human-computer interaction) and generative tasks (e.g., style-controllable speech generation). In this work, we introduce ParaMETA, a unified and flexible framework for learning and controlling speaking styles directly from speech. Unlike existing methods that rely on single-task models or cross-modal alignment, ParaMETA learns disentangled, task-specific embeddings by projecting speech into dedicated subspaces for each type of style. This design reduces inter-task interference, mitigates negative transfer, and allows a single model to handle multiple paralinguistic tasks such as emotion, gender, age, and language classification. Beyond recognition, ParaMETA enables fine-grained style control in Text-To-Speech (TTS) generative models. It supports both speech- and text-based prompting and allows users to modify one speaking styles while preserving others. Extensive experiments demonstrate that ParaMETA outperforms strong baselines in classification accuracy and generates more natural and expressive speech, while maintaining a lightweight and efficient model suitable for real-world applications.
Drones operating in human-occupied spaces suffer from insufficient communication mechanisms that create uncertainty about their intentions. We present HoverAI, an embodied aerial agent that integrates drone mobility, infrastructure-independent visual projection, and real-time conversational AI into a unified platform. Equipped with a MEMS laser projector, onboard semi-rigid screen, and RGB camera, HoverAI perceives users through vision and voice, responding via lip-synced avatars that adapt appearance to user demographics. The system employs a multimodal pipeline combining VAD, ASR (Whisper), LLM-based intent classification, RAG for dialogue, face analysis for personalization, and voice synthesis (XTTS v2). Evaluation demonstrates high accuracy in command recognition (F1: 0.90), demographic estimation (gender F1: 0.89, age MAE: 5.14 years), and speech transcription (WER: 0.181). By uniting aerial robotics with adaptive conversational AI and self-contained visual output, HoverAI introduces a new class of spatially-aware, socially responsive embodied agents for applications in guidance, assistance, and human-centered interaction.
Although many Automatic Speech Recognition (ASR) systems have been developed for Modern Standard Arabic (MSA) and Dialectal Arabic (DA), few studies have focused on dialect-specific implementations, particularly for low-resource Arabic dialects such as Sudanese. This paper presents a comprehensive study of data augmentation techniques for fine-tuning OpenAI Whisper models and establishes the first benchmark for the Sudanese dialect. Two augmentation strategies are investigated: (1) self-training with pseudo-labels generated from unlabeled speech, and (2) TTS-based augmentation using synthetic speech from the Klaam TTS system. The best-performing model, Whisper-Medium fine-tuned with combined self-training and TTS augmentation (28.4 hours), achieves a Word Error Rate (WER) of 57.1% on the evaluation set and 51.6% on an out-of-domain holdout set substantially outperforming zero-shot multilingual Whisper (78.8% WER) and MSA-specialized Arabic models (73.8-123% WER). All experiments used low-cost resources (Kaggle free tier and Lightning.ai trial), demonstrating that strategic data augmentation can overcome resource limitations for low-resource dialects and provide a practical roadmap for developing ASR systems for low-resource Arabic dialects and other marginalized language varieties. The models, evaluation benchmarks, and reproducible training pipelines are publicly released to facilitate future research on low-resource Arabic ASR.
The recent surge in open-source Multimodal Large Language Models (MLLM) frameworks, such as LLaVA, provides a convenient kickoff for artificial intelligence developers and researchers. However, most of the MLLM frameworks take vision as the main input modality, and provide limited in-depth support for the modality of speech, audio, and music. This situation hinders the development of audio-language models, and forces researchers to spend a lot of effort on code writing and hyperparameter tuning. We present SLAM-LLM, an open-source deep learning framework designed to train customized MLLMs, focused on speech, language, audio, and music processing. SLAM-LLM provides a modular configuration of different encoders, projectors, LLMs, and parameter-efficient fine-tuning plugins. SLAM-LLM also includes detailed training and inference recipes for mainstream tasks, along with high-performance checkpoints like LLM-based Automatic Speech Recognition (ASR), Automated Audio Captioning (AAC), and Music Captioning (MC). Some of these recipes have already reached or are nearing state-of-the-art performance, and some relevant techniques have also been accepted by academic papers. We hope SLAM-LLM will accelerate iteration, development, data engineering, and model training for researchers. We are committed to continually pushing forward audio-based MLLMs through this open-source framework, and call on the community to contribute to the LLM-based speech, audio and music processing.
CAPTCHAs are widely used by websites to block bots and spam by presenting challenges that are easy for humans but difficult for automated programs to solve. To improve accessibility, audio CAPTCHAs are designed to complement visual ones. However, the robustness of audio CAPTCHAs against advanced Large Audio Language Models (LALMs) and Automatic Speech Recognition (ASR) models remains unclear. In this paper, we introduce AI-CAPTCHA, a unified framework that offers (i) an evaluation framework, ACEval, which includes advanced LALM- and ASR-based solvers, and (ii) a novel audio CAPTCHA approach, IllusionAudio, leveraging audio illusions. Through extensive evaluations of seven widely deployed audio CAPTCHAs, we show that most existing methods can be solved with high success rates by advanced LALMs and ASR models, exposing critical security weaknesses. To address these vulnerabilities, we design a new audio CAPTCHA approach, IllusionAudio, which exploits perceptual illusion cues rooted in human auditory mechanisms. Extensive experiments demonstrate that our method defeats all tested LALM- and ASR-based attacks while achieving a 100% human pass rate, significantly outperforming existing audio CAPTCHA methods.
Despite having hundreds of millions of speakers, Chinese dialects lag behind Mandarin in speech and language technologies. Most varieties are primarily spoken, making dialect-to-Mandarin speech-LLMs (large language models) more practical than dialect LLMs. Building dialect-to-Mandarin speech-LLMs requires speech representations with cross-dialect semantic alignment between Chinese dialects and Mandarin. In this paper, we achieve such a cross-dialect semantic alignment by training a speech encoder with ASR (automatic speech recognition)-only data, as demonstrated by speech-to-speech retrieval on a new benchmark of spoken Chinese varieties that we contribute. Our speech encoder further demonstrates state-of-the-art ASR performance on Chinese dialects. Together, our Chinese dialect benchmark, semantically aligned speech representations, and speech-to-speech retrieval evaluation lay the groundwork for future Chinese dialect speech-LLMs. We release the benchmark at https://github.com/kalvinchang/yubao.
Noise-robust automatic speech recognition (ASR) has been commonly addressed by applying speech enhancement (SE) at the waveform level before recognition. However, speech-level enhancement does not always translate into consistent recognition improvements due to residual distortions and mismatches with the latent space of the ASR encoder. In this letter, we introduce a complementary strategy termed latent-level enhancement, where distorted representations are refined during ASR inference. Specifically, we propose a plug-and-play Flow Matching Refinement module (FM-Refiner) that operates on the output latents of a pretrained CTC-based ASR encoder. Trained to map imperfect latents-either directly from noisy inputs or from enhanced-but-imperfect speech-toward their clean counterparts, the FM-Refiner is applied only at inference, without fine-tuning ASR parameters. Experiments show that FM-Refiner consistently reduces word error rate, both when directly applied to noisy inputs and when combined with conventional SE front-ends. These results demonstrate that latent-level refinement via flow matching provides a lightweight and effective complement to existing SE approaches for robust ASR.
Speech conveys not only linguistic information but also rich non-verbal vocal events such as laughing and crying. While semantic transcription is well-studied, the precise localization of non-verbal events remains a critical yet under-explored challenge. Current methods suffer from insufficient task definitions with limited category coverage and ambiguous temporal granularity. They also lack standardized evaluation frameworks, hindering the development of downstream applications. To bridge this gap, we first develop a refined taxonomy of 21 vocal events, with a new categorization into discrete (standalone) versus continuous (mixed with speech) types. Based on the refined taxonomy, we introduce WESR-Bench, an expert-annotated evaluation set (900+ utterances) with a novel position-aware protocol that disentangles ASR errors from event detection, enabling precise localization measurement for both discrete and continuous events. We also build a strong baseline by constructing a 1,700+ hour corpus, and train specialized models, surpassing both open-source audio-language models and commercial APIs while preserving ASR quality. We anticipate that WESR will serve as a foundational resource for future research in modeling rich, real-world auditory scenes.