What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Aug 29, 2025
Abstract:To ensure the reliability of deep models in real-world applications, out-of-distribution (OOD) detection methods aim to distinguish samples close to the training distribution (in-distribution, ID) from those farther away (OOD). In this work, we propose a novel OOD detection method that utilizes singular value decomposition of the weight matrix of the classification head to decompose the model's activations into decisive and insignificant components, which contribute maximally, respectively minimally, to the final classifier output. We find that the subspace of insignificant components more effectively distinguishes ID from OOD data than raw activations in regimes of large distribution shifts (Far-OOD). This occurs because the classification objective leaves the insignificant subspace largely unaffected, yielding features that are ''untainted'' by the target classification task. Conversely, in regimes of smaller distribution shifts (Near-OOD), we find that activation shaping methods profit from only considering the decisive subspace, as the insignificant component can cause interference in the activation space. By combining two findings into a single approach, termed ActSub, we achieve state-of-the-art results in various standard OOD benchmarks.
Via

Aug 29, 2025
Abstract:Accurate interpretation of clinical narratives is critical for patient care, but the complexity of these notes makes automation challenging. While Large Language Models (LLMs) show promise, single-model approaches can lack the robustness required for high-stakes clinical tasks. We introduce a collaborative multi-agent system (MAS) that models a clinical consultation team to address this gap. The system is tasked with identifying clinical problems by analyzing only the Subjective (S) and Objective (O) sections of SOAP notes, simulating the diagnostic reasoning process of synthesizing raw data into an assessment. A Manager agent orchestrates a dynamically assigned team of specialist agents who engage in a hierarchical, iterative debate to reach a consensus. We evaluated our MAS against a single-agent baseline on a curated dataset of 420 MIMIC-III notes. The dynamic multi-agent configuration demonstrated consistently improved performance in identifying congestive heart failure, acute kidney injury, and sepsis. Qualitative analysis of the agent debates reveals that this structure effectively surfaces and weighs conflicting evidence, though it can occasionally be susceptible to groupthink. By modeling a clinical team's reasoning process, our system offers a promising path toward more accurate, robust, and interpretable clinical decision support tools.
* Accepted to The 16th ACM Conference on Bioinformatics, Computational
Biology, and Health Informatics (ACM-BCB 2025)(Poster Paper)
Via

Aug 25, 2025
Abstract:In this paper we investigate cross-lingual Text-To-Speech (TTS) synthesis through the lens of adapters, in the context of lightweight TTS systems. In particular, we compare the tasks of unseen speaker and language adaptation with the goal of synthesising a target voice in a target language, in which the target voice has no recordings therein. Results from objective evaluations demonstrate the effectiveness of adapters in learning language-specific and speaker-specific information, allowing pre-trained models to learn unseen speaker identities or languages, while avoiding catastrophic forgetting of the original model's speaker or language information. Additionally, to measure how native the generated voices are in terms of accent, we propose and validate an objective metric inspired by mispronunciation detection techniques in second-language (L2) learners. The paper also provides insights into the impact of adapter placement, configuration and the number of speakers used.
* Accepted at IEEE MLSP 2025
Via

Aug 27, 2025
Abstract:Fine-tuning LLMs on narrowly harmful datasets can lead to behavior that is broadly misaligned with respect to human values. To understand when and how this emergent misalignment occurs, we develop a comprehensive framework for detecting and characterizing rapid transitions during fine-tuning using both distributional change detection methods as well as order parameters that are formulated in plain English and evaluated by an LLM judge. Using an objective statistical dissimilarity measure, we quantify how the phase transition that occurs during fine-tuning affects multiple aspects of the model. In particular, we assess what percentage of the total distributional change in model outputs is captured by different aspects, such as alignment or verbosity, providing a decomposition of the overall transition. We also find that the actual behavioral transition occurs later in training than indicated by the peak in the gradient norm alone. Our framework enables the automated discovery and quantification of language-based order parameters, which we demonstrate on examples ranging from knowledge questions to politics and ethics.
* 11+25 pages, 4+11 figures
Via

Aug 27, 2025
Abstract:We present a novel framework for estimating accident-prone regions in everyday indoor scenes, aimed at improving real-time risk awareness in service robots operating in human-centric environments. As robots become integrated into daily life, particularly in homes, the ability to anticipate and respond to environmental hazards is crucial for ensuring user safety, trust, and effective human-robot interaction. Our approach models object-level risk and context through a semantic graph-based propagation algorithm. Each object is represented as a node with an associated risk score, and risk propagates asymmetrically from high-risk to low-risk objects based on spatial proximity and accident relationship. This enables the robot to infer potential hazards even when they are not explicitly visible or labeled. Designed for interpretability and lightweight onboard deployment, our method is validated on a dataset with human-annotated risk regions, achieving a binary risk detection accuracy of 75%. The system demonstrates strong alignment with human perception, particularly in scenes involving sharp or unstable objects. These results underline the potential of context-aware risk reasoning to enhance robotic scene understanding and proactive safety behaviors in shared human-robot spaces. This framework could serve as a foundation for future systems that make context-driven safety decisions, provide real-time alerts, or autonomously assist users in avoiding or mitigating hazards within home environments.
* 8 pages, Accepted for IEEE RO-MAN 2025 Conference
Via

Aug 20, 2025
Abstract:Visual prompt-based methods have seen growing interest in incremental learning (IL) for image classification. These approaches learn additional embedding vectors while keeping the model frozen, making them efficient to train. However, no prior work has applied such methods to incremental object detection (IOD), leaving their generalizability unclear. In this paper, we analyze three different prompt-based methods under a complex domain-incremental learning setting. We additionally provide a wide range of reference baselines for comparison. Empirically, we show that the prompt-based approaches we tested underperform in this setting. However, a strong yet practical method, combining visual prompts with replaying a small portion of previous data, achieves the best results. Together with additional experiments on prompt length and initialization, our findings offer valuable insights for advancing prompt-based IL in IOD.
* Accepted to ICCV Workshops 2025
Via

Aug 26, 2025
Abstract:Microsurgical anastomosis demands exceptional dexterity and visuospatial skills, underscoring the importance of comprehensive training and precise outcome assessment. Currently, methods such as the outcome-oriented anastomosis lapse index are used to evaluate this procedure. However, they often rely on subjective judgment, which can introduce biases that affect the reliability and efficiency of the assessment of competence. Leveraging three datasets from hospitals with participants at various levels, we introduce a quantitative framework that uses image-processing techniques for objective assessment of microsurgical anastomoses. The approach uses geometric modeling of errors along with a detection and scoring mechanism, enhancing the efficiency and reliability of microsurgical proficiency assessment and advancing training protocols. The results show that the geometric metrics effectively replicate expert raters' scoring for the errors considered in this work.
* 7 pages, 7 figures, accepted at EMBC2025
Via

Aug 26, 2025
Abstract:Robust robotic task execution hinges on the reliable detection of execution failures in order to trigger safe operation modes, recovery strategies, or task replanning. However, many failure detection methods struggle to provide meaningful performance when applied to a variety of real-world scenarios. In this paper, we propose a video-based failure detection approach that uses spatio-temporal knowledge in the form of the actions the robot performs and task-relevant objects within the field of view. Both pieces of information are available in most robotic scenarios and can thus be readily obtained. We demonstrate the effectiveness of our approach on three datasets that we amend, in part, with additional annotations of the aforementioned task-relevant knowledge. In light of the results, we also propose a data augmentation method that improves performance by applying variable frame rates to different parts of the video. We observe an improvement from 77.9 to 80.0 in F1 score on the ARMBench dataset without additional computational expense and an additional increase to 81.4 with test-time augmentation. The results emphasize the importance of spatio-temporal information during failure detection and suggest further investigation of suitable heuristics in future implementations. Code and annotations are available.
* Accepted at ECMR 2025
Via

Aug 29, 2025
Abstract:We introduce a novel wearable textile-garment featuring an innovative electrode placement aimed at minimizing noise and motion artifacts, thereby enhancing signal fidelity in Electrocardiography (ECG) recordings. We present a comprehensive, sex-balanced evaluation involving 15 healthy males and 15 healthy female participants to ensure the device's suitability across anatomical and physiological variations. The assessment framework encompasses distinct evaluation approaches: quantitative signal quality indices to objectively benchmark device performance; rhythm-based analyzes of physiological parameters such as heart rate and heart rate variability; machine learning classification tasks to assess application-relevant predictive utility; morphological analysis of ECG features including amplitude and interval parameters; and investigations of the effects of electrode projection angle given by the textile / body shape, with all analyzes stratified by sex to elucidate sex-specific influences. Evaluations were conducted across various activity phases representing real-world conditions. The results demonstrate that the textile system achieves signal quality highly concordant with reference devices in both rhythm and morphological analyses, exhibits robust classification performance, and enables identification of key sex-specific determinants affecting signal acquisition. These findings underscore the practical viability of textile-based ECG garments for physiological monitoring as well as psychophysiological state detection. Moreover, we identify the importance of incorporating sex-specific design considerations to ensure equitable and reliable cardiac diagnostics in wearable health technologies.
Via

Aug 20, 2025
Abstract:In one-stage multi-object detection tasks, various intersection over union (IoU)-based solutions aim at smooth and stable convergence near the targets during training. However, IoU-based losses fail to correctly update the gradient of small objects due to an extremely flat gradient. During the update of multiple objects, the learning of small objects' gradients suffers more because of insufficient gradient updates. Therefore, we propose an inter-class relational loss to efficiently update the gradient of small objects while not sacrificing the learning efficiency of other objects based on the simple fact that an object has a spatial relationship to another object (e.g., a car plate is attached to a car in a similar position). When the predicted car plate's bounding box is not within its car, a loss punishment is added to guide the learning, which is inversely proportional to the overlapped area of the car's and predicted car plate's bounding box. By leveraging the spatial relationship at the inter-class level, the loss guides small object predictions using larger objects and enhances latent information in deeper feature maps. In this paper, we present twofold contributions using license plate detection as a case study: (1) a new small vehicle multi-license plate dataset (SVMLP), featuring diverse real-world scenarios with high-quality annotations; and (2) a novel inter-class relational loss function designed to promote effective detection performance. We highlight the proposed ICR loss penalty can be easily added to existing IoU-based losses and enhance the performance. These contributions improve the standard mean Average Precision (mAP) metric, achieving gains of 10.3% and 1.6% in mAP$^{\text{test}}_{50}$ for YOLOv12-T and UAV-DETR, respectively, without any additional hyperparameter tuning. Code and dataset will be available soon.
Via
