Temporal knowledge graphs (TKGs) support reasoning over time-evolving facts, yet state-of-the-art models are often computationally heavy and costly to deploy. Existing compression and distillation techniques are largely designed for static graphs; directly applying them to temporal settings may overlook time-dependent interactions and lead to performance degradation. We propose an LLM-assisted distillation framework specifically designed for temporal knowledge graph reasoning. Beyond a conventional high-capacity temporal teacher, we incorporate a large language model as an auxiliary instructor to provide enriched supervision. The LLM supplies broad background knowledge and temporally informed signals, enabling a lightweight student to better model event dynamics without increasing inference-time complexity. Training is conducted by jointly optimizing supervised and distillation objectives, using a staged alignment strategy to progressively integrate guidance from both teachers. Extensive experiments on multiple public TKG benchmarks with diverse backbone architectures demonstrate that the proposed approach consistently improves link prediction performance over strong distillation baselines, while maintaining a compact and efficient student model. The results highlight the potential of large language models as effective teachers for transferring temporal reasoning capability to resource-efficient TKG systems.
Reinforcement learning has emerged as a powerful paradigm for unlocking reasoning capabilities in large language models. However, relying on sparse rewards makes this process highly sample-inefficient, as models must navigate vast search spaces with minimal feedback. While classic curriculum learning aims to mitigate this by ordering data based on complexity, the right ordering for a specific model is often unclear. To address this, we propose Goldilocks, a novel teacher-driven data sampling strategy that aims to predict each question's difficulty for the student model. The teacher model selects questions of appropriate difficulty for the student model, i.e., questions that are neither too easy nor too hard (Goldilocks principle), while training the student with GRPO. By leveraging the student's performance on seen samples, the teacher continuously adapts to the student's evolving abilities. On OpenMathReasoning dataset, Goldilocks data sampling improves the performance of models trained with standard GRPO under the same compute budget.
Deep knowledge tracing models have achieved significant breakthroughs in modeling student learning trajectories. However, these architectures require substantial training time and are prone to overfitting on datasets with short sequences. In this paper, we explore a new paradigm for knowledge tracing by leveraging tabular foundation models (TFMs). Unlike traditional methods that require offline training on a fixed training set, our approach performs real-time ''live'' knowledge tracing in an online way. The core of our method lies in a two-way attention mechanism: while attention knowledge tracing models only attend across earlier time steps, TFMs simultaneously attend across both time steps and interactions of other students in the training set. They align testing sequences with relevant training sequences at inference time, therefore skipping the training step entirely. We demonstrate, using several datasets of increasing size, that our method achieves competitive predictive performance with up to 273x speedups, in a setting where more student interactions are observed over time.
3D semantic occupancy prediction enables autonomous vehicles (AVs) to perceive fine-grained geometric and semantic structure of their surroundings from onboard sensors, which is essential for safe decision-making and navigation. Recent models for 3D semantic occupancy prediction have successfully addressed the challenge of describing real-world objects with varied shapes and classes. However, the intermediate representations used by existing methods for 3D semantic occupancy prediction rely heavily on 3D voxel volumes or a set of 3D Gaussians, hindering the model's ability to efficiently and effectively capture fine-grained geometric details in the 3D driving environment. This paper introduces TFusionOcc, a novel object-centric multi-sensor fusion framework for predicting 3D semantic occupancy. By leveraging multi-stage multi-sensor fusion, Student's t-distribution, and the T-Mixture model (TMM), together with more geometrically flexible primitives, such as the deformable superquadric (superquadric with inverse warp), the proposed method achieved state-of-the-art (SOTA) performance on the nuScenes benchmark. In addition, extensive experiments were conducted on the nuScenes-C dataset to demonstrate the robustness of the proposed method in different camera and lidar corruption scenarios. The code will be available at: https://github.com/DanielMing123/TFusionOcc
Beamforming in millimeter-wave (mmWave) high-mobility environments typically incurs substantial training overhead. While prior studies suggest that sub-6 GHz channels can be exploited to predict optimal mmWave beams, existing methods depend on large deep learning (DL) models with prohibitive computational and memory requirements. In this paper, we propose a computationally efficient framework for sub-6 GHz channel-mmWave beam mapping based on the knowledge distillation (KD) technique. We develop two compact student DL architectures based on individual and relational distillation strategies, which retain only a few hidden layers yet closely mimic the performance of large teacher DL models. Extensive simulations demonstrate that the proposed student models achieve the teacher's beam prediction accuracy and spectral efficiency while reducing trainable parameters and computational complexity by 99%.
We introduce Variational Joint Embedding (VJE), a framework that synthesizes joint embedding and variational inference to enable self-supervised learning of probabilistic representations in a reconstruction-free, non-contrastive setting. Compared to energy-based predictive objectives that optimize pointwise discrepancies, VJE maximizes a symmetric conditional evidence lower bound (ELBO) for a latent-variable model defined directly on encoder embeddings. We instantiate the conditional likelihood with a heavy-tailed Student-$t$ model using a polar decomposition that explicitly decouples directional and radial factors to prevent norm-induced instabilities during training. VJE employs an amortized inference network to parameterize a diagonal Gaussian variational posterior whose feature-wise variances are shared with the likelihood scale to capture anisotropic uncertainty without auxiliary projection heads. Across ImageNet-1K, CIFAR-10/100, and STL-10, VJE achieves performance comparable to standard non-contrastive baselines under linear and k-NN evaluation. We further validate these probabilistic semantics through one-class CIFAR-10 anomaly detection, where likelihood-based scoring under the proposed model outperforms comparable self-supervised baselines.
Trajectory prediction and planning are fundamental yet disconnected components in autonomous driving. Prediction models forecast surrounding agent motion under unknown intentions, producing multimodal distributions, while planning assumes known ego objectives and generates deterministic trajectories. This mismatch creates a critical bottleneck: prediction lacks supervision for agent intentions, while planning requires this information. Existing prediction models, despite strong benchmarking performance, often remain disconnected from planning constraints such as collision avoidance and dynamic feasibility. We introduce Plan TRansformer (PTR), a unified Gaussian Mixture Transformer framework integrating goal-conditioned prediction, dynamic feasibility, interaction awareness, and lane-level topology reasoning. A teacher-student training strategy progressively masks surrounding agent commands during training to align with inference conditions where agent intentions are unavailable. PTR achieves 4.3%/3.5% improvement in marginal/joint mAP compared to the baseline Motion Transformer (MTR) and 15.5% planning error reduction at 5s horizon compared to GameFormer. The architecture-agnostic design enables application to diverse Transformer-based prediction models. Project Website: https://github.com/SelzerConst/PlanTRansformer
Knowledge distillation (KD) is a machine learning framework that transfers knowledge from a teacher model to a student model. The vanilla KD proposed by Hinton et al. has been the dominant approach in logit-based distillation and demonstrates compelling performance. However, it only performs sample-wise probability alignment between teacher and student's predictions, lacking an mechanism for class-wise comparison. Besides, vanilla KD imposes no structural constraint on the probability space. In this work, we propose a simple yet effective methodology, bilateral contrastive knowledge distillation (BicKD). This approach introduces a novel bilateral contrastive loss, which intensifies the orthogonality among different class generalization spaces while preserving consistency within the same class. The bilateral formulation enables explicit comparison of both sample-wise and class-wise prediction patterns between teacher and student. By emphasizing probabilistic orthogonality, BicKD further regularizes the geometric structure of the predictive distribution. Extensive experiments show that our BicKD method enhances knowledge transfer, and consistently outperforms state-of-the-art knowledge distillation techniques across various model architectures and benchmarks.
Because of the pervasive use of deep neural networks (DNNs), especially in high-stakes domains, the interpretability of DNNs has received increased attention. The general idea of rationale extraction (RE) is to provide an interpretable-by-design framework for DNNs via a select-predict architecture where two neural networks learn jointly to perform feature selection and prediction, respectively. Given only the remote supervision from the final task prediction, the process of learning to select subsets of features (or \emph{rationales}) requires searching in the space of all possible feature combinations, which is computationally challenging and even harder when the base neural networks are not sufficiently capable. To improve the predictive performance of RE models that are based on less capable or smaller neural networks (i.e., the students), we propose \textbf{REKD} (\textbf{R}ationale \textbf{E}xtraction with \textbf{K}nowledge \textbf{D}istillation) where a student RE model learns from the rationales and predictions of a teacher (i.e., a \emph{rationalist}) in addition to the student's own RE optimization. This structural adjustment to RE aligns well with how humans could learn effectively from interpretable and verifiable knowledge. Because of the neural-model agnostic nature of the method, any black-box neural network could be integrated as a backbone model. To demonstrate the viability of REKD, we conduct experiments with multiple variants of BERT and vision transformer (ViT) models. Our experiments across language and vision classification datasets (i.e., IMDB movie reviews, CIFAR 10 and CIFAR 100) show that REKD significantly improves the predictive performance of the student RE models.
A consistent trend throughout the research of oriented object detection has been the pursuit of maintaining comparable performance with fewer and weaker annotations. This is particularly crucial in the remote sensing domain, where the dense object distribution and a wide variety of categories contribute to prohibitively high costs. Based on the supervision level, existing oriented object detection algorithms can be broadly grouped into fully supervised, semi-supervised, and weakly supervised methods. Within the scope of this work, we further categorize them to include sparsely supervised and partially weakly-supervised methods. To address the challenges of large-scale labeling, we introduce the first Sparse Partial Weakly-Supervised Oriented Object Detection framework, designed to efficiently leverage only a few sparse weakly-labeled data and plenty of unlabeled data. Our framework incorporates three key innovations: (1) We design a Sparse-annotation-Orientation-and-Scale-aware Student (SOS-Student) model to separate unlabeled objects from the background in a sparsely-labeled setting, and learn orientation and scale information from orientation-agnostic or scale-agnostic weak annotations. (2) We construct a novel Multi-level Pseudo-label Filtering strategy that leverages the distribution of model predictions, which is informed by the model's multi-layer predictions. (3) We propose a unique sparse partitioning approach, ensuring equal treatment for each category. Extensive experiments on the DOTA and DIOR datasets show that our framework achieves a significant performance gain over traditional oriented object detection methods mentioned above, offering a highly cost-effective solution. Our code is publicly available at https://github.com/VisionXLab/SPWOOD.