Transformer-based language models of code have achieved state-of-the-art performance across a wide range of software analytics tasks, but their practical deployment remains limited due to high computational costs, slow inference speeds, and significant environmental impact. To address these challenges, recent research has increasingly explored knowledge distillation as a method for compressing a large language model of code (the teacher) into a smaller model (the student) while maintaining performance. However, the degree to which a student model deeply mimics the predictive behavior and internal representations of its teacher remains largely unexplored, as current accuracy-based evaluation provides only a surface-level view of model quality and often fails to capture more profound discrepancies in behavioral fidelity between the teacher and student models. To address this gap, we empirically show that the student model often fails to deeply mimic the teacher model, resulting in up to 285% greater performance drop under adversarial attacks, which is not captured by traditional accuracy-based evaluation. Therefore, we propose MetaCompress, a metamorphic testing framework that systematically evaluates behavioral fidelity by comparing the outputs of teacher and student models under a set of behavior-preserving metamorphic relations. We evaluate MetaCompress on two widely studied tasks, using compressed versions of popular language models of code, obtained via three different knowledge distillation techniques: Compressor, AVATAR, and MORPH. The results show that MetaCompress identifies up to 62% behavioral discrepancies in student models, underscoring the need for behavioral fidelity evaluation within the knowledge distillation pipeline and establishing MetaCompress as a practical framework for testing compressed language models of code derived through knowledge distillation.
Accurate and interpretable predictions of depression severity are essential for clinical decision support, yet existing models often lack uncertainty estimates and temporal modeling. We propose PTTSD, a Probabilistic Textual Time Series Depression Detection framework that predicts PHQ-8 scores from utterance-level clinical interviews while modeling uncertainty over time. PTTSD includes sequence-to-sequence and sequence-to-one variants, both combining bidirectional LSTMs, self-attention, and residual connections with Gaussian or Student-t output heads trained via negative log-likelihood. Evaluated on E-DAIC and DAIC-WOZ, PTTSD achieves state-of-the-art performance among text-only systems (e.g., MAE = 3.85 on E-DAIC, 3.55 on DAIC) and produces well-calibrated prediction intervals. Ablations confirm the value of attention and probabilistic modeling, while comparisons with MentalBERT establish generality. A three-part calibration analysis and qualitative case studies further highlight the interpretability and clinical relevance of uncertainty-aware forecasting.
This study evaluates a 40-item mathematics placement examination administered to 198 students using a multi-method framework combining Classical Test Theory, machine learning, and unsupervised clustering. Classical Test Theory analysis reveals that 55\% of items achieve excellent discrimination ($D \geq 0.40$) while 30\% demonstrate poor discrimination ($D < 0.20$) requiring replacement. Question 6 (Graph Interpretation) emerges as the examination's most powerful discriminator, achieving perfect discrimination ($D = 1.000$), highest ANOVA F-statistic ($F = 4609.1$), and maximum Random Forest feature importance (0.206), accounting for 20.6\% of predictive power. Machine learning algorithms demonstrate exceptional performance, with Random Forest and Gradient Boosting achieving 97.5\% and 96.0\% cross-validation accuracy. K-means clustering identifies a natural binary competency structure with a boundary at 42.5\%, diverging from the institutional threshold of 55\% and suggesting potential overclassification into remedial categories. The two-cluster solution exhibits exceptional stability (bootstrap ARI = 0.855) with perfect lower-cluster purity. Convergent evidence across methods supports specific refinements: replace poorly discriminating items, implement a two-stage assessment, and integrate Random Forest predictions with transparency mechanisms. These findings demonstrate that multi-method integration provides a robust empirical foundation for evidence-based mathematics placement optimization.
Tabular foundation models such as TabPFN have revolutionized predictive machine learning for tabular data. At the same time, the driving factors of this revolution are hard to understand. Existing open-source tabular foundation models are implemented in complicated pipelines boasting over 10,000 lines of code, lack architecture documentation or code quality. In short, the implementations are hard to understand, not beginner-friendly, and complicated to adapt for new experiments. We introduce nanoTabPFN, a simplified and lightweight implementation of the TabPFN v2 architecture and a corresponding training loop that uses pre-generated training data. nanoTabPFN makes tabular foundation models more accessible to students and researchers alike. For example, restricted to a small data setting it achieves a performance comparable to traditional machine learning baselines within one minute of pre-training on a single GPU (160,000x faster than TabPFN v2 pretraining). This eliminated requirement of large computational resources makes pre-training tabular foundation models accessible for educational purposes. Our code is available at https://github.com/automl/nanoTabPFN.
This paper addresses the limitations of large-scale language models in safety alignment and robustness by proposing a fine-tuning method that combines contrastive distillation with noise-robust training. The method freezes the backbone model and transfers the knowledge boundaries of the teacher model to the student model through distillation, thereby improving semantic consistency and alignment accuracy. At the same time, noise perturbations and robust optimization constraints are introduced during training to ensure that the model maintains stable predictive outputs under noisy and uncertain inputs. The overall framework consists of distillation loss, robustness loss, and a regularization term, forming a unified optimization objective that balances alignment ability with resistance to interference. To systematically validate its effectiveness, the study designs experiments from multiple perspectives, including distillation weight sensitivity, stability analysis under computation budgets and mixed-precision environments, and the impact of data noise and distribution shifts on model performance. Results show that the method significantly outperforms existing baselines in knowledge transfer, robustness, and overall safety, achieving the best performance across several key metrics. This work not only enriches the theoretical system of parameter-efficient fine-tuning but also provides a new solution for building safer and more trustworthy alignment mechanisms.
As information technology advances, education is moving from one-size-fits-all instruction toward personalized learning. However, most methods handle modeling, item selection, and feedback in isolation rather than as a closed loop. This leads to coarse or opaque student models, assumption-bound adaptivity that ignores diagnostic posteriors, and generic, non-actionable feedback. To address these limitations, this paper presents an end-to-end personalized learning agent, EduLoop-Agent, which integrates a Neural Cognitive Diagnosis model (NCD), a Bounded-Ability Estimation Computerized Adaptive Testing strategy (BECAT), and large language models (LLMs). The NCD module provides fine-grained estimates of students' mastery at the knowledge-point level; BECAT dynamically selects subsequent items to maximize relevance and learning efficiency; and LLMs convert diagnostic signals into structured, actionable feedback. Together, these components form a closed-loop framework of ``Diagnosis--Recommendation--Feedback.'' Experiments on the ASSISTments dataset show that the NCD module achieves strong performance on response prediction while yielding interpretable mastery assessments. The adaptive recommendation strategy improves item relevance and personalization, and the LLM-based feedback offers targeted study guidance aligned with identified weaknesses. Overall, the results indicate that the proposed design is effective and practically deployable, providing a feasible pathway to generating individualized learning trajectories in intelligent education.
Knowledge distillation is a promising approach to transfer capabilities from complex teacher models to smaller, resource-efficient student models that can be deployed easily, particularly in task-aware scenarios. However, existing methods of task-aware distillation typically require substantial quantities of data which may be unavailable or expensive to obtain in many practical scenarios. In this paper, we address this challenge by introducing a novel strategy called Counterfactual-explanation-infused Distillation CoD for few-shot task-aware knowledge distillation by systematically infusing counterfactual explanations. Counterfactual explanations (CFEs) refer to inputs that can flip the output prediction of the teacher model with minimum perturbation. Our strategy CoD leverages these CFEs to precisely map the teacher's decision boundary with significantly fewer samples. We provide theoretical guarantees for motivating the role of CFEs in distillation, from both statistical and geometric perspectives. We mathematically show that CFEs can improve parameter estimation by providing more informative examples near the teacher's decision boundary. We also derive geometric insights on how CFEs effectively act as knowledge probes, helping the students mimic the teacher's decision boundaries more effectively than standard data. We perform experiments across various datasets and LLMs to show that CoD outperforms standard distillation approaches in few-shot regimes (as low as 8-512 samples). Notably, CoD only uses half of the original samples used by the baselines, paired with their corresponding CFEs and still improves performance.
In Machine Learning (ML), a regression algorithm aims to minimize a loss function based on data. An assessment method in this context seeks to quantify the discrepancy between the optimal response for an input-output system and the estimate produced by a learned predictive model (the student). Evaluating the quality of a learned regressor remains challenging without access to the true data-generating mechanism, as no data-driven assessment method can ensure the achievability of global optimality. This work introduces the Information Teacher, a novel data-driven framework for evaluating regression algorithms with formal performance guarantees to assess global optimality. Our novel approach builds on estimating the Shannon mutual information (MI) between the input variables and the residuals and applies to a broad class of additive noise models. Through numerical experiments, we confirm that the Information Teacher is capable of detecting global optimality, which is aligned with the condition of zero estimation error with respect to the -- inaccessible, in practice -- true model, working as a surrogate measure of the ground truth assessment loss and offering a principled alternative to conventional empirical performance metrics.
Large language models (LLM) have emerged as a promising avenue for time series forecasting, offering the potential to integrate multimodal data. However, existing LLM-based approaches face notable limitations-such as marginalized role in model architectures, reliance on coarse statistical text prompts, and lack of interpretability. In this work, we introduce Augur, a fully LLM driven time series forecasting framework that exploits LLM causal reasoning to discover and use directed causal associations among covariates. Augur uses a two stage teacher student architecture where a powerful teacher LLM infers a directed causal graph from time series using heuristic search together with pairwise causality testing. A lightweight student agent then refines the graph and fine tune on high confidence causal associations that are encoded as rich textual prompts to perform forecasting. This design improves predictive accuracy while yielding transparent, traceable reasoning about variable interactions. Extensive experiments on real-world datasets with 25 baselines demonstrate that Augur achieves competitive performance and robust zero-shot generalization.
Small language models (SLMs) are crucial for applications with strict latency and computational constraints, yet achieving high performance remains challenging. Knowledge distillation (KD) can transfer capabilities from large teacher models, but existing methods involve trade-offs: off-policy distillation provides high-quality supervision but introduces a training-inference mismatch, while on-policy approaches maintain consistency but rely on low-quality student outputs. To address these issues, we propose AdaSwitch, a novel approach that dynamically combines on-policy and off-policy generation at the token level. AdaSwitch allows the student to first explore its own predictions and then selectively integrate teacher guidance based on real-time quality assessment. This approach simultaneously preserves consistency and maintains supervision quality. Experiments on three datasets with two teacher-student LLM pairs demonstrate that AdaSwitch consistently improves accuracy, offering a practical and effective method for distilling SLMs with acceptable additional overhead.