Differentiable contact kinematics are essential for gradient-based methods in robotics, yet the mapping from robot state to contact distance, location, and normal becomes non-smooth in degenerate configurations of shapes with zero or undefined curvature. We address this inherent limitation by selectively regularizing such geometries into strictly convex implicit representations, restoring uniqueness and smoothness of the contact map. Leveraging this geometric regularization, we develop iDCOL, an implicit differentiable collision detection and contact kinematics framework. iDCOL represents colliding bodies using strictly convex implicit surfaces and computes collision detection and contact kinematics by solving a fixed-size nonlinear system derived from a geometric scaling-based convex optimization formulation. By applying the Implicit Function Theorem to the resulting system residual, we derive analytical derivatives of the contact kinematic quantities. We develop a fast Newton-based solver for iDCOL and provide an open-source C++ implementation of the framework. The robustness of the approach is evaluated through extensive collision simulations and benchmarking, and applicability is demonstrated in gradient-based kinematic path planning and differentiable contact physics, including multi-body rigid collisions and a soft-robot interaction example.
Neuro-symbolic systems aim to combine the expressive structure of symbolic logic with the flexibility of neural learning; yet, generative models typically lack mechanisms to enforce declarative constraints at generation time. We propose Logic-Guided Vector Fields (LGVF), a neuro-symbolic framework that injects symbolic knowledge, specified as differentiable relaxations of logical constraints, into flow matching generative models. LGVF couples two complementary mechanisms: (1) a training-time logic loss that penalizes constraint violations along continuous flow trajectories, with weights that emphasize correctness near the target distribution; and (2) an inference-time adjustment that steers sampling using constraint gradients, acting as a lightweight, logic-informed correction to the learned dynamics. We evaluate LGVF on three constrained generation case studies spanning linear, nonlinear, and multi-region feasibility constraints. Across all settings, LGVF reduces constraint violations by 59-82% compared to standard flow matching and achieves the lowest violation rates in each case. In the linear and ring settings, LGVF also improves distributional fidelity as measured by MMD, while in the multi-obstacle setting, we observe a satisfaction-fidelity trade-off, with improved feasibility but increased MMD. Beyond quantitative gains, LGVF yields constraint-aware vector fields exhibiting emergent obstacle-avoidance behavior, routing samples around forbidden regions without explicit path planning.
World models are essential for autonomous robotic planning. However, the substantial computational overhead of existing dense Transformerbased models significantly hinders real-time deployment. To address this efficiency-performance bottleneck, we introduce DDP-WM, a novel world model centered on the principle of Disentangled Dynamics Prediction (DDP). We hypothesize that latent state evolution in observed scenes is heterogeneous and can be decomposed into sparse primary dynamics driven by physical interactions and secondary context-driven background updates. DDP-WM realizes this decomposition through an architecture that integrates efficient historical processing with dynamic localization to isolate primary dynamics. By employing a crossattention mechanism for background updates, the framework optimizes resource allocation and provides a smooth optimization landscape for planners. Extensive experiments demonstrate that DDP-WM achieves significant efficiency and performance across diverse tasks, including navigation, precise tabletop manipulation, and complex deformable or multi-body interactions. Specifically, on the challenging Push-T task, DDP-WM achieves an approximately 9 times inference speedup and improves the MPC success rate from 90% to98% compared to state-of-the-art dense models. The results establish a promising path for developing efficient, high-fidelity world models. Codes will be available at https://github.com/HCPLab-SYSU/DDP-WM.
Enterprise meeting environments require AI assistants that handle diverse operational tasks, from rapid fact checking during live discussions to cross meeting analysis for strategic planning, under strict latency, cost, and privacy constraints. Existing meeting benchmarks mainly focus on simplified question answering and fail to reflect real world enterprise workflows, where queries arise organically from multi stakeholder collaboration, span long temporal contexts, and require tool augmented reasoning. We address this gap through a grounded dataset and a learned agent framework. First, we introduce MeetAll, a bilingual and multimodal corpus derived from 231 enterprise meetings totaling 140 hours. Questions are injected using an enterprise informed protocol validated by domain expert review and human discriminability studies. Unlike purely synthetic benchmarks, this protocol is grounded in four enterprise critical dimensions: cognitive load, temporal context span, domain expertise, and actionable task execution, calibrated through interviews with stakeholders across finance, healthcare, and technology sectors. Second, we propose MeetBench XL, a multi dimensional evaluation protocol aligned with human judgment that measures factual fidelity, intent alignment, response efficiency, structural clarity, and completeness. Third, we present MeetMaster XL, a learned dual policy agent that jointly optimizes query routing between fast and slow reasoning paths and tool invocation, including retrieval, cross meeting aggregation, and web search. A lightweight classifier enables accurate routing with minimal overhead, achieving a superior quality latency tradeoff over single model baselines. Experiments against commercial systems show consistent gains, supported by ablations, robustness tests, and a real world deployment case study.Resources: https://github.com/huyuelin/MeetBench.
This work stems from prior complementary observations on the dynamics of Chain-of-Thought (CoT): Large Language Models (LLMs) is shown latent planning of subsequent reasoning prior to CoT emergence, thereby diminishing the significance of explicit CoT; whereas CoT remains critical for tasks requiring multi-step reasoning. To deepen the understanding between LLM's internal states and its verbalized reasoning trajectories, we investigate the latent planning strength of LLMs, through our probing method, Tele-Lens, applying to hidden states across diverse task domains. Our empirical results indicate that LLMs exhibit a myopic horizon, primarily conducting incremental transitions without precise global planning. Leveraging this characteristic, we propose a hypothesis on enhancing uncertainty estimation of CoT, which we validate that a small subset of CoT positions can effectively represent the uncertainty of the entire path. We further underscore the significance of exploiting CoT dynamics, and demonstrate that automatic recognition of CoT bypass can be achieved without performance degradation. Our code, data and models are released at https://github.com/lxucs/tele-lens.
Modern scientific research relies on large-scale data, complex workflows, and specialized tools, which existing LLMs and tool-based agents struggle to handle due to limitations in long-horizon planning, robust goal maintenance, and continual learning from execution. To address these issues, in this work, we propose S1-NexusAgent, a self-evolving agent framework designed for multidisciplinary scientific research. S1-NexusAgent adopts a hierarchical Plan-and-CodeAct execution paradigm, decoupling global scientific planning from subtask-level tool execution through a dual-loop architecture, thereby enabling stable modeling of complex research workflows. The system natively supports the Model Context Protocol (MCP), integrates up to thousands of cross-disciplinary scientific tools, and achieves efficient orchestration of heterogeneous research tools via intention-aware dynamic tool retrieval and hot-plug mechanisms. To address long-context and large-scale data challenges in scientific settings, S1-NexusAgent introduces object-reference-based sparse context management, which enables sub-task context isolation and intermediate result compression. Building on this, a Critic Agent automatically evaluates complete execution trajectories and distills high-quality research paths into reusable Scientific Skills, forming a closed loop for continuous self-evolution, which is valuable for sustainable and long-horizon scientific research. Experiments on authoritative scientific benchmarks involving long-horizon planning and complex specialized tool orchestration, including biomini-eval (biology), ChemBench (chemistry), and MatSciBench (material science), demonstrate that S1-NexusAgent achieves state-of-the-art performance, validating its effectiveness and generalization capability in complex scientific tasks.
This project compares three graph search approaches for the task of traffic-aware navigation in Kingston's road network. These approaches include a single-run multi-query preprocessing algorithm (Floyd-Warshall-Ingerman), continuous single-query real-time search (Dijkstra's and A*), and an algorithm combining both approaches to balance between their trade-offs by first finding the top K shortest paths then iterating over them in real time (Yen's). Dijkstra's and A* resulted in the most traffic-aware optimal solutions with minimal preprocessing required. Floyd-Warshall-Ingerman was the fastest in real time but provided distance based paths with no traffic awareness. Yen's algorithm required significant preprocessing but balanced between the other two approaches in terms of runtime speed and optimality. Each approach presents advantages and disadvantages that need to be weighed depending on the circumstances of specific deployment contexts to select the best custom solution. *This project was completed as part of ELEC 844 (Search and Planning Algorithms for Robotics) in the Fall 2025 term.
Low speed does not always guarantee safety in off-road driving. For instance, crossing a ditch may be risky at a low speed due to the risk of getting stuck, yet safe at a higher speed with a controlled, accelerated jump. Achieving such behavior requires path planning that explicitly models complex motion dynamics, whereas existing methods often neglect this aspect and plan solely based on positions or a fixed velocity. To address this gap, we introduce Motion-aware Traversability (MAT) representation to explicitly model terrain cost conditioned on actual robot motion. Instead of assigning a single scalar score for traversability, MAT models each terrain region as a Gaussian function of velocity. During online planning, we decompose the terrain cost computation into two stages: (1) predict terrain-dependent Gaussian parameters from perception in a single forward pass, (2) efficiently update terrain costs for new velocities inferred from current dynamics by evaluating these functions without repeated inference. We develop a system that integrates MAT to enable agile off-road navigation and evaluate it in both simulated and real-world environments with various obstacles. Results show that MAT achieves real-time efficiency and enhances the performance of off-road navigation, reducing path detours by 75% while maintaining safety across challenging terrains.
We address the problem of reactive motion planning for quadrotors operating in unknown environments with dynamic obstacles. Our approach leverages a 4-dimensional spatio-temporal planner, integrated with vision-based Safe Flight Corridor (SFC) generation and trajectory optimization. Unlike prior methods that rely on map fusion, our framework is mapless, enabling collision avoidance directly from perception while reducing computational overhead. Dynamic obstacles are detected and tracked using a vision-based object segmentation and tracking pipeline, allowing robust classification of static versus dynamic elements in the scene. To further enhance robustness, we introduce a backup planning module that reactively avoids dynamic obstacles when no direct path to the goal is available, mitigating the risk of collisions during deadlock situations. We validate our method extensively in both simulation and real-world hardware experiments, and benchmark it against state-of-the-art approaches, showing significant advantages for reactive UAV navigation in dynamic, unknown environments.
Real-time path planning in constrained environments remains a fundamental challenge for autonomous systems. Traditional classical planners, while effective under perfect perception assumptions, are often sensitive to real-world perception constraints and rely on online search procedures that incur high computational costs. In complex surroundings, this renders real-time deployment prohibitive. To overcome these limitations, we introduce a Deep Reinforcement Learning (DRL) framework for real-time path planning in parking scenarios. In particular, we focus on challenging scenes with tight spaces that require a high number of reversal maneuvers and adjustments. Unlike classical planners, our solution does not require ideal and structured perception, and in principle, could avoid the need for additional modules such as localization and tracking, resulting in a simpler and more practical implementation. Also, at test time, the policy generates actions through a single forward pass at each step, which is lightweight enough for real-time deployment. The task is formulated as a sequential decision-making problem grounded in a bicycle model dynamics, enabling the agent to directly learn navigation policies that respect vehicle kinematics and environmental constraints in the closed-loop setting. A new benchmark is developed to support both training and evaluation, capturing diverse and challenging scenarios. Our approach achieves state-of-the-art success rates and efficiency, surpassing classical planner baselines by +96% in success rate and +52% in efficiency. Furthermore, we release our benchmark as an open-source resource for the community to foster future research in autonomous systems. The benchmark and accompanying tools are available at https://github.com/dqm5rtfg9b-collab/Constrained_Parking_Scenarios.