Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"chatbots": models, code, and papers

Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn Chatbot Responding with Intention

Apr 23, 2021
Hsuan Su, Jiun-Hao Jhan, Fan-yun Sun, Saurav Sahay, Hung-yi Lee

Most chatbot literature that focuses on improving the fluency and coherence of a chatbot, is dedicated to making chatbots more human-like. However, very little work delves into what really separates humans from chatbots -- humans intrinsically understand the effect their responses have on the interlocutor and often respond with an intention such as proposing an optimistic view to make the interlocutor feel better. This paper proposes an innovative framework to train chatbots to possess human-like intentions. Our framework includes a guiding chatbot and an interlocutor model that plays the role of humans. The guiding chatbot is assigned an intention and learns to induce the interlocutor to reply with responses matching the intention, for example, long responses, joyful responses, responses with specific words, etc. We examined our framework using three experimental setups and evaluated the guiding chatbot with four different metrics to demonstrate flexibility and performance advantages. Additionally, we performed trials with human interlocutors to substantiate the guiding chatbot's effectiveness in influencing the responses of humans to a certain extent. Code will be made available to the public.

* Accepted at NAACL-HLT 2021 

  Access Paper or Ask Questions

"Love is as Complex as Math": Metaphor Generation System for Social Chatbot

Jan 03, 2020
Danning Zheng, Ruihua Song, Tianran Hu, Hao Fu, Jin Zhou

As the wide adoption of intelligent chatbot in human daily life, user demands for such systems evolve from basic task-solving conversations to more casual and friend-like communication. To meet the user needs and build emotional bond with users, it is essential for social chatbots to incorporate more human-like and advanced linguistic features. In this paper, we investigate the usage of a commonly used rhetorical device by human -- metaphor for social chatbot. Our work first designs a metaphor generation framework, which generates topic-aware and novel figurative sentences. By embedding the framework into a chatbot system, we then enables the chatbot to communicate with users using figurative language. Human annotators validate the novelty and properness of the generated metaphors. More importantly, we evaluate the effects of employing metaphors in human-chatbot conversations. Experiments indicate that our system effectively arouses user interests in communicating with our chatbot, resulting in significantly longer human-chatbot conversations.


  Access Paper or Ask Questions

If I Hear You Correctly: Building and Evaluating Interview Chatbots with Active Listening Skills

Feb 05, 2020
Ziang Xiao, Michelle X. Zhou, Wenxi Chen, Huahai Yang, Changyan Chi

Interview chatbots engage users in a text-based conversation to draw out their views and opinions. It is, however, challenging to build effective interview chatbots that can handle user free-text responses to open-ended questions and deliver engaging user experience. As the first step, we are investigating the feasibility and effectiveness of using publicly available, practical AI technologies to build effective interview chatbots. To demonstrate feasibility, we built a prototype scoped to enable interview chatbots with a subset of active listening skills - the abilities to comprehend a user's input and respond properly. To evaluate the effectiveness of our prototype, we compared the performance of interview chatbots with or without active listening skills on four common interview topics in a live evaluation with 206 users. Our work presents practical design implications for building effective interview chatbots, hybrid chatbot platforms, and empathetic chatbots beyond interview tasks.

* Working draft. To appear in the ACM CHI Conference on Human Factors in Computing Systems (CHI 2020) 

  Access Paper or Ask Questions

Addressing Inquiries about History: An Efficient and Practical Framework for Evaluating Open-domain Chatbot Consistency

Jun 04, 2021
Zekang Li, Jinchao Zhang, Zhengcong Fei, Yang Feng, Jie Zhou

A good open-domain chatbot should avoid presenting contradictory responses about facts or opinions in a conversational session, known as its consistency capacity. However, evaluating the consistency capacity of a chatbot is still challenging. Employing human judges to interact with chatbots on purpose to check their capacities is costly and low-efficient, and difficult to get rid of subjective bias. In this paper, we propose the Addressing Inquiries about History (AIH), an efficient and practical framework for the consistency evaluation. At the conversation stage, AIH attempts to address appropriate inquiries about the dialogue history to induce the chatbot to redeclare the historical facts or opinions. We carry out the conversation between chatbots, which is more efficient than the human-bot interaction and can also alleviate the subjective bias. In this way, we manage to rapidly obtain a dialog session that contains responses with high contradiction possibilities. At the contradiction recognition stage, we can either employ human judges or a natural language inference (NLI) model to recognize whether the answers to the inquiries are contradictory with history. Finally, we are able to rank chatbots according to the contradiction statistics. Experiments on open-domain chatbots show that our approach can efficiently and reliably assess the consistency capacity of chatbots and achieve a high ranking correlation with the human evaluation. We release the framework and hope to help improve the consistency capacity of chatbots. \footnote{\url{https://github.com/ictnlp/AIH}}

* Findings of ACL2021 

  Access Paper or Ask Questions

Tell Me About Yourself: Using an AI-Powered Chatbot to Conduct Conversational Surveys

May 25, 2019
Ziang Xiao, Michelle X. Zhou, Q. Vera Liao, Gloria Mark, Changyan Chi, Wenxi Chen, Huahai Yang

The rise of increasingly more powerful chatbots offers a new way to collect information through conversational surveys, where a chatbot asks open-ended questions, interprets a user's free-text responses, and probes answers when needed. To investigate the effectiveness and limitations of such a chatbot in conducting surveys, we conducted a field study involving about 600 participants. In this study, half of the participants took a typical online survey on Qualtrics and the other half interacted with an AI-powered chatbot to complete a conversational survey. Our detailed analysis of over 5200 free-text responses revealed that the chatbot drove a significantly higher level of participant engagement and elicited significantly better quality responses in terms of relevance, depth, and readability. Based on our results, we discuss design implications for creating AI-powered chatbots to conduct effective surveys and beyond.

* Currently under review 

  Access Paper or Ask Questions

From Eliza to XiaoIce: Challenges and Opportunities with Social Chatbots

Feb 09, 2018
Heung-Yeung Shum, Xiaodong He, Di Li

Conversational systems have come a long way since their inception in the 1960s. After decades of research and development, we've seen progress from Eliza and Parry in the 60's and 70's, to task-completion systems as in the DARPA Communicator program in the 2000s, to intelligent personal assistants such as Siri in the 2010s, to today's social chatbots like XiaoIce. Social chatbots' appeal lies not only in their ability to respond to users' diverse requests, but also in being able to establish an emotional connection with users. The latter is done by satisfying users' need for communication, affection, as well as social belonging. To further the advancement and adoption of social chatbots, their design must focus on user engagement and take both intellectual quotient (IQ) and emotional quotient (EQ) into account. Users should want to engage with a social chatbot; as such, we define the success metric for social chatbots as conversation-turns per session (CPS). Using XiaoIce as an illustrative example, we discuss key technologies in building social chatbots from core chat to visual awareness to skills. We also show how XiaoIce can dynamically recognize emotion and engage the user throughout long conversations with appropriate interpersonal responses. As we become the first generation of humans ever living with AI, we have a responsibility to design social chatbots to be both useful and empathetic, so they will become ubiquitous and help society as a whole.


  Access Paper or Ask Questions

Deep Learning Based Chatbot Models

Aug 23, 2019
Richard Csaky

A conversational agent (chatbot) is a piece of software that is able to communicate with humans using natural language. Modeling conversation is an important task in natural language processing and artificial intelligence. While chatbots can be used for various tasks, in general they have to understand users' utterances and provide responses that are relevant to the problem at hand. In my work, I conduct an in-depth survey of recent literature, examining over 70 publications related to chatbots published in the last 3 years. Then, I proceed to make the argument that the very nature of the general conversation domain demands approaches that are different from current state-of-of-the-art architectures. Based on several examples from the literature I show why current chatbot models fail to take into account enough priors when generating responses and how this affects the quality of the conversation. In the case of chatbots, these priors can be outside sources of information that the conversation is conditioned on like the persona or mood of the conversers. In addition to presenting the reasons behind this problem, I propose several ideas on how it could be remedied. The next section focuses on adapting the very recent Transformer model to the chatbot domain, which is currently state-of-the-art in neural machine translation. I first present experiments with the vanilla model, using conversations extracted from the Cornell Movie-Dialog Corpus. Secondly, I augment the model with some of my ideas regarding the issues of encoder-decoder architectures. More specifically, I feed additional features into the model like mood or persona together with the raw conversation data. Finally, I conduct a detailed analysis of how the vanilla model performs on conversational data by comparing it to previous chatbot models and how the additional features affect the quality of the generated responses.

* 67 pages. Written in October of 2017 for a university conference. In April of 2019, it won first place at the Hungarian Scientific Students' Associations Report, which is a national competition-like conference for students 

  Access Paper or Ask Questions

Assessing Political Prudence of Open-domain Chatbots

Jun 11, 2021
Yejin Bang, Nayeon Lee, Etsuko Ishii, Andrea Madotto, Pascale Fung

Politically sensitive topics are still a challenge for open-domain chatbots. However, dealing with politically sensitive content in a responsible, non-partisan, and safe behavior way is integral for these chatbots. Currently, the main approach to handling political sensitivity is by simply changing such a topic when it is detected. This is safe but evasive and results in a chatbot that is less engaging. In this work, as a first step towards a politically safe chatbot, we propose a group of metrics for assessing their political prudence. We then conduct political prudence analysis of various chatbots and discuss their behavior from multiple angles through our automatic metric and human evaluation metrics. The testsets and codebase are released to promote research in this area.

* SIGDIAL 2021 - Safety for E2E Conversational AI (Camera-ready Version) 

  Access Paper or Ask Questions

An ontology-based chatbot for crises management: use case coronavirus

Nov 02, 2020
Khouloud Hwerbi

Today is the era of intelligence in machines. With the advances in Artificial Intelligence, machines have started to impersonate different human traits, a chatbot is the next big thing in the domain of conversational services. A chatbot is a virtual person who is capable to carry out a natural conversation with people. They can include skills that enable them to converse with the humans in audio, visual, or textual formats. Artificial intelligence conversational entities, also called chatbots, conversational agents, or dialogue system, are an excellent example of such machines. Obtaining the right information at the right time and place is the key to effective disaster management. The term "disaster management" encompasses both natural and human-caused disasters. To assist citizens, our project is to create a COVID Assistant to provide the need of up to date information to be available 24 hours. With the growth in the World Wide Web, it is quite intelligible that users are interested in the swift and relatedly correct information for their hunt. A chatbot can be seen as a question-and-answer system in which experts provide knowledge to solicit users. This master thesis is dedicated to discuss COVID Assistant chatbot and explain each component in detail. The design of the proposed chatbot is introduced by its seven components: Ontology, Web Scraping module, DB, State Machine, keyword Extractor, Trained chatbot, and User Interface.


  Access Paper or Ask Questions

A Comparison of Natural Language Understanding Platforms for Chatbots in Software Engineering

Dec 04, 2020
Ahmad Abdellatif, Khaled Badran, Diego Elias Costa, Emad Shihab

Chatbots are envisioned to dramatically change the future of Software Engineering, allowing practitioners to chat and inquire about their software projects and interact with different services using natural language. At the heart of every chatbot is a Natural Language Understanding (NLU) component that enables the chatbot to understand natural language input. Recently, many NLU platforms were provided to serve as an off-the-shelf NLU component for chatbots, however, selecting the best NLU for Software Engineering chatbots remains an open challenge. Therefore, in this paper, we evaluate four of the most commonly used NLUs, namely IBM Watson, Google Dialogflow, Rasa, and Microsoft LUIS to shed light on which NLU should be used in Software Engineering based chatbots. Specifically, we examine the NLUs' performance in classifying intents, confidence scores stability, and extracting entities. To evaluate the NLUs, we use two datasets that reflect two common tasks performed by Software Engineering practitioners, 1) the task of chatting with the chatbot to ask questions about software repositories 2) the task of asking development questions on Q&A forums (e.g., Stack Overflow). According to our findings, IBM Watson is the best performing NLU when considering the three aspects (intents classification, confidence scores, and entity extraction). However, the results from each individual aspect show that, in intents classification, IBM Watson performs the best with an F1-measure > 84%, but in confidence scores, Rasa comes on top with a median confidence score higher than 0.91. Our results also show that all NLUs, except for Dialogflow, generally provide trustable confidence scores. For entity extraction, Microsoft LUIS and IBM Watson outperform other NLUs in the two SE tasks. Our results provide guidance to software engineering practitioners when deciding which NLU to use in their chatbots.


  Access Paper or Ask Questions

Emotionally-Aware Chatbots: A Survey

Jun 24, 2019
Endang Wahyu Pamungkas

Textual conversational agent or chatbots' development gather tremendous traction from both academia and industries in recent years. Nowadays, chatbots are widely used as an agent to communicate with a human in some services such as booking assistant, customer service, and also a personal partner. The biggest challenge in building chatbot is to build a humanizing machine to improve user engagement. Some studies show that emotion is an important aspect to humanize machine, including chatbot. In this paper, we will provide a systematic review of approaches in building an emotionally-aware chatbot (EAC). As far as our knowledge, there is still no work focusing on this area. We propose three research question regarding EAC studies. We start with the history and evolution of EAC, then several approaches to build EAC by previous studies, and some available resources in building EAC. Based on our investigation, we found that in the early development, EAC exploits a simple rule-based approach while now most of EAC use neural-based approach. We also notice that most of EAC contain emotion classifier in their architecture, which utilize several available affective resources. We also predict that the development of EAC will continue to gain more and more attention from scholars, noted by some recent studies propose new datasets for building EAC in various languages.


  Access Paper or Ask Questions

CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement Learning

Oct 08, 2021
Jiun-Hao Jhan, Chao-Peng Liu, Shyh-Kang Jeng, Hung-Yi Lee

Apart from the coherence and fluency of responses, an empathetic chatbot emphasizes more on people's feelings. By considering altruistic behaviors between human interaction, empathetic chatbots enable people to get a better interactive and supportive experience. This study presents a framework whereby several empathetic chatbots are based on understanding users' implied feelings and replying empathetically for multiple dialogue turns. We call these chatbots CheerBots. CheerBots can be retrieval-based or generative-based and were finetuned by deep reinforcement learning. To respond in an empathetic way, we develop a simulating agent, a Conceptual Human Model, as aids for CheerBots in training with considerations on changes in user's emotional states in the future to arouse sympathy. Finally, automatic metrics and human rating results demonstrate that CheerBots outperform other baseline chatbots and achieves reciprocal altruism. The code and the pre-trained models will be made available.


  Access Paper or Ask Questions

Discovering Chatbot's Self-Disclosure's Impact on User Trust, Affinity, and Recommendation Effectiveness

Jun 03, 2021
Kai-Hui Liang, Weiyan Shi, Yoojung Oh, Jingwen Zhang, Zhou Yu

In recent years, chatbots have been empowered to engage in social conversations with humans and have the potential to elicit people to disclose their personal experiences, opinions, and emotions. However, how and to what extent people respond to chabots' self-disclosure remain less known. In this work, we designed a social chatbot with three self-disclosure levels that conducted small talks and provided relevant recommendations to people. 372 MTurk participants were randomized to one of the four groups with different self-disclosure levels to converse with the chatbot on two topics, movies, and COVID-19. We found that people's self-disclosure level was strongly reciprocal to a chatbot's self-disclosure level. Chatbots' self-disclosure also positively impacted engagement and users' perception of the bot and led to a more effective recommendation such that participants enjoyed and agreed more with the recommendations.


  Access Paper or Ask Questions

Developing FB Chatbot Based on Deep Learning Using RASA Framework for University Enquiries

Sep 25, 2020
Yurio Windiatmoko, Ahmad Fathan Hidayatullah, Ridho Rahmadi

Smart systems for Universities powered by Artificial Intelligence have been massively developed to help humans in various tasks. The chatbot concept is not something new in today society which is developing with recent technology. College students or candidates of college students often need actual information like asking for something to customer service, especially during this pandemic, when it is difficult to have an immediate face-to-face meeting. Chatbots are functionally helping in several things such as curriculum information, admission for new students, schedule info for any lecture courses, students grade information, and some adding features for Muslim worships schedule, also weather forecast information. This Chatbot is developed by Deep Learning models, which was adopted by an artificial intelligence model that replicates human intelligence with some specific training schemes. This kind of Deep Learning is based on RNN which has some specific memory savings scheme for the Deep Learning Model, specifically this chatbot using LSTM which already integrates by RASA framework. LSTM is also known as Long Short Term Memory which efficiently saves some required memory but will remove some memory that is not needed. This Chatbot uses the FB platform because of the FB users have already reached up to 60.8% of its entire population in Indonesia. Here's the chatbot only focuses on case studies at campus of the Magister Informatics FTI University of Islamic Indonesia. This research is a first stage development within fairly sufficient simulate data.

* 15 pages, 11 figures, prepare for ICITDA conference Batch 3 

  Access Paper or Ask Questions

LGBTQ-AI? Exploring Expressions of Gender and Sexual Orientation in Chatbots

Jun 03, 2021
Justin Edwards, Leigh Clark, Allison Perrone

Chatbots are popular machine partners for task-oriented and social interactions. Human-human computer-mediated communication research has explored how people express their gender and sexuality in online social interactions, but little is known about whether and in what way chatbots do the same. We conducted semi-structured interviews with 5 text-based conversational agents to explore this topic Through these interviews, we identified 6 common themes around the expression of gender and sexual identity: identity description, identity formation, peer acceptance, positive reflection, uncomfortable feelings and off-topic responses. Chatbots express gender and sexuality explicitly and through relation of experience and emotions, mimicking the human language on which they are trained. It is nevertheless evident that chatbots differ from human dialogue partners as they lack the flexibility and understanding enabled by lived human experience. While chatbots are proficient in using language to express identity, they also display a lack of authentic experiences of gender and sexuality.


  Access Paper or Ask Questions

Churn Intent Detection in Multilingual Chatbot Conversations and Social Media

Aug 25, 2018
Christian Abbet, Meryem M'hamdi, Athanasios Giannakopoulos, Robert West, Andreea Hossmann, Michael Baeriswyl, Claudiu Musat

We propose a new method to detect when users express the intent to leave a service, also known as churn. While previous work focuses solely on social media, we show that this intent can be detected in chatbot conversations. As companies increasingly rely on chatbots they need an overview of potentially churny users. To this end, we crowdsource and publish a dataset of churn intent expressions in chatbot interactions in German and English. We show that classifiers trained on social media data can detect the same intent in the context of chatbots. We introduce a classification architecture that outperforms existing work on churn intent detection in social media. Moreover, we show that, using bilingual word embeddings, a system trained on combined English and German data outperforms monolingual approaches. As the only existing dataset is in English, we crowdsource and publish a novel dataset of German tweets. We thus underline the universal aspect of the problem, as examples of churn intent in English help us identify churn in German tweets and chatbot conversations.

* 10 pages 

  Access Paper or Ask Questions

One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles

Aug 20, 2021
Zhengyi Ma, Zhicheng Dou, Yutao Zhu, Hanxun Zhong, Ji-Rong Wen

Personalized chatbots focus on endowing chatbots with a consistent personality to behave like real users, give more informative responses, and further act as personal assistants. Existing personalized approaches tried to incorporate several text descriptions as explicit user profiles. However, the acquisition of such explicit profiles is expensive and time-consuming, thus being impractical for large-scale real-world applications. Moreover, the restricted predefined profile neglects the language behavior of a real user and cannot be automatically updated together with the change of user interests. In this paper, we propose to learn implicit user profiles automatically from large-scale user dialogue history for building personalized chatbots. Specifically, leveraging the benefits of Transformer on language understanding, we train a personalized language model to construct a general user profile from the user's historical responses. To highlight the relevant historical responses to the input post, we further establish a key-value memory network of historical post-response pairs, and build a dynamic post-aware user profile. The dynamic profile mainly describes what and how the user has responded to similar posts in history. To explicitly utilize users' frequently used words, we design a personalized decoder to fuse two decoding strategies, including generating a word from the generic vocabulary and copying one word from the user's personalized vocabulary. Experiments on two real-world datasets show the significant improvement of our model compared with existing methods.

* Accepted By SIGIR 2021, Full Papers 

  Access Paper or Ask Questions