We examine whether large language models (LLMs) can predict biased decision-making in conversational settings, and whether their predictions capture not only human cognitive biases but also how those effects change under cognitive load. In a pre-registered study (N = 1,648), participants completed six classic decision-making tasks via a chatbot with dialogues of varying complexity. Participants exhibited two well-documented cognitive biases: the Framing Effect and the Status Quo Bias. Increased dialogue complexity resulted in participants reporting higher mental demand. This increase in cognitive load selectively, but significantly, increased the effect of the biases, demonstrating the load-bias interaction. We then evaluated whether LLMs (GPT-4, GPT-5, and open-source models) could predict individual decisions given demographic information and prior dialogue. While results were mixed across choice problems, LLM predictions that incorporated dialogue context were significantly more accurate in several key scenarios. Importantly, their predictions reproduced the same bias patterns and load-bias interactions observed in humans. Across all models tested, the GPT-4 family consistently aligned with human behavior, outperforming GPT-5 and open-source models in both predictive accuracy and fidelity to human-like bias patterns. These findings advance our understanding of LLMs as tools for simulating human decision-making and inform the design of conversational agents that adapt to user biases.
As Large Language Models (LLMs) evolve from static chatbots into autonomous agents capable of tool execution, the landscape of AI safety is shifting from content moderation to action security. However, existing red-teaming frameworks remain bifurcated: they either focus on rigid, script-based text attacks or lack the architectural modularity to simulate complex, multi-turn agentic exploitations. In this paper, we introduce AJAR (Adaptive Jailbreak Architecture for Red-teaming), a proof-of-concept framework designed to bridge this gap through Protocol-driven Cognitive Orchestration. Built upon the robust runtime of Petri, AJAR leverages the Model Context Protocol (MCP) to decouple adversarial logic from the execution loop, encapsulating state-of-the-art algorithms like X-Teaming as standardized, plug-and-play services. We validate the architectural feasibility of AJAR through a controlled qualitative case study, demonstrating its ability to perform stateful backtracking within a tool-use environment. Furthermore, our preliminary exploration of the "Agentic Gap" reveals a complex safety dynamic: while tool usage introduces new injection vectors via code execution, the cognitive load of parameter formatting can inadvertently disrupt persona-based attacks. AJAR is open-sourced to facilitate the standardized, environment-aware evaluation of this emerging attack surface. The code and data are available at https://github.com/douyipu/ajar.
Recent progress in large language models and multimodal interaction has made it possible to develop AI companions that can have fluent and emotionally expressive conversations. However, many of these systems have problems keeping users satisfied and engaged over long periods. This paper argues that these problems do not come mainly from weak models, but from poor character design and unclear definitions of the user-AI relationship. I present Mikasa, an emotional AI companion inspired by Japanese Oshi culture-specifically its emphasis on long-term, non-exclusive commitment to a stable character-as a case study of character-driven companion design. Mikasa does not work as a general-purpose assistant or a chatbot that changes roles. Instead, Mikasa is designed as a coherent character with a stable personality and a clearly defined relationship as a partner. This relationship does not force exclusivity or obligation. Rather, it works as a reference point that stabilizes interaction norms and reduces the work users must do to keep redefining the relationship. Through an exploratory evaluation, I see that users describe their preferences using surface-level qualities such as conversational naturalness, but they also value relationship control and imaginative engagement in ways they do not state directly. These results suggest that character coherence and relationship definition work as latent structural elements that shape how good the interaction feels, without users recognizing them as main features. The contribution of this work is to show that character design is a functional part of AI companion systems, not just decoration. Mikasa is one example based on a specific cultural context, but the design principles-commitment to a consistent personality and clear relationship definition-can be used for many emotionally grounded AI companions.
The rapid adoption of large language model (LLM)-based systems -- from chatbots to autonomous agents capable of executing code and financial transactions -- has created a new attack surface that existing security frameworks inadequately address. The dominant framing of these threats as "prompt injection" -- a catch-all phrase for security failures in LLM-based systems -- obscures a more complex reality: Attacks on LLM-based systems increasingly involve multi-step sequences that mirror traditional malware campaigns. In this paper, we propose that attacks targeting LLM-based applications constitute a distinct class of malware, which we term \textit{promptware}, and introduce a five-step kill chain model for analyzing these threats. The framework comprises Initial Access (prompt injection), Privilege Escalation (jailbreaking), Persistence (memory and retrieval poisoning), Lateral Movement (cross-system and cross-user propagation), and Actions on Objective (ranging from data exfiltration to unauthorized transactions). By mapping recent attacks to this structure, we demonstrate that LLM-related attacks follow systematic sequences analogous to traditional malware campaigns. The promptware kill chain offers security practitioners a structured methodology for threat modeling and provides a common vocabulary for researchers across AI safety and cybersecurity to address a rapidly evolving threat landscape.
Anthropomorphisation -- the phenomenon whereby non-human entities are ascribed human-like qualities -- has become increasingly salient with the rise of large language model (LLM)-based conversational agents (CAs). Unlike earlier chatbots, LLM-based CAs routinely generate interactional and linguistic cues, such as first-person self-reference, epistemic and affective expressions that empirical work shows can increase engagement. On the other hand, anthropomorphisation raises ethical concerns, including deception, overreliance, and exploitative relationship framing, while some authors argue that anthropomorphic interaction may support autonomy, well-being, and inclusion. Despite increasing interest in the phenomenon, literature remains fragmented across domains and varies substantially in how it defines, operationalizes, and normatively evaluates anthropomorphisation. This scoping review maps ethically oriented work on anthropomorphising LLM-based CAs across five databases and three preprint repositories. We synthesize (1) conceptual foundations, (2) ethical challenges and opportunities, and (3) methodological approaches. We find convergence on attribution-based definitions but substantial divergence in operationalization, a predominantly risk-forward normative framing, and limited empirical work that links observed interaction effects to actionable governance guidance. We conclude with a research agenda and design/governance recommendations for ethically deploying anthropomorphic cues in LLM-based conversational agents.
The rapid advancement of Large Language Models (LLMs) has necessitated more robust evaluation methods that go beyond static benchmarks, which are increasingly prone to data saturation and leakage. In this paper, we propose a dynamic benchmarking framework for evaluating multilingual and multicultural capabilities through the social deduction game Spyfall. In our setup, models must engage in strategic dialogue to either identify a secret agent or avoid detection, utilizing culturally relevant locations or local foods. Our results show that our game-based rankings align closely with the Chatbot Arena. However, we find a significant performance gap in non-English contexts: models are generally less proficient when handling locally specific entities and often struggle with rule-following or strategic integrity in non-English languages. We demonstrate that this game-based approach provides a scalable, leakage-resistant, and culturally nuanced alternative to traditional NLP benchmarks. The game history can be accessed here https://huggingface.co/datasets/haryoaw/cultural-spyfall.
Digital platforms have an ever-expanding user base, and act as a hub for communication, business, and connectivity. However, this has also allowed for the spread of hate speech and misogyny. Artificial intelligence models have emerged as an effective solution for countering online hate speech but are under explored for low resource and code-mixed languages and suffer from a lack of interpretability. Explainable Artificial Intelligence (XAI) can enhance transparency in the decisions of deep learning models, which is crucial for a sensitive domain such as hate speech detection. In this paper, we present a multi-modal and explainable web application for detecting misogyny in text and memes in code-mixed Hindi and English. The system leverages state-of-the-art transformer-based models that support multilingual and multimodal settings. For text-based misogyny identification, the system utilizes XLM-RoBERTa (XLM-R) and multilingual Bidirectional Encoder Representations from Transformers (mBERT) on a dataset of approximately 4,193 comments. For multimodal misogyny identification from memes, the system utilizes mBERT + EfficientNet, and mBERT + ResNET trained on a dataset of approximately 4,218 memes. It also provides feature importance scores using explainability techniques including Shapley Additive Values (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). The application aims to serve as a tool for both researchers and content moderators, to promote further research in the field, combat gender based digital violence, and ensure a safe digital space. The system has been evaluated using human evaluators who provided their responses on Chatbot Usability Questionnaire (CUQ) and User Experience Questionnaire (UEQ) to determine overall usability.
As language-model agents evolve from passive chatbots into proactive assistants that handle personal data, evaluating their adherence to social norms becomes increasingly critical, often through the lens of Contextual Integrity (CI). However, existing CI benchmarks are largely text-centric and primarily emphasize negative refusal scenarios, overlooking multimodal privacy risks and the fundamental trade-off between privacy and utility. In this paper, we introduce MPCI-Bench, the first Multimodal Pairwise Contextual Integrity benchmark for evaluating privacy behavior in agentic settings. MPCI-Bench consists of paired positive and negative instances derived from the same visual source and instantiated across three tiers: normative Seed judgments, context-rich Story reasoning, and executable agent action Traces. Data quality is ensured through a Tri-Principle Iterative Refinement pipeline. Evaluations of state-of-the-art multimodal models reveal systematic failures to balance privacy and utility and a pronounced modality leakage gap, where sensitive visual information is leaked more frequently than textual information. We will open-source MPCI-Bench to facilitate future research on agentic CI.
Conversational agents are increasingly used as support tools along mental therapeutic pathways with significant societal impacts. In particular, empathy is a key non-functional requirement in therapeutic contexts, yet current chatbot development practices provide no systematic means to specify or verify it. This paper envisions a framework integrating natural language processing and formal verification to deliver empathetic therapy chatbots. A Transformer-based model extracts dialogue features, which are then translated into a Stochastic Hybrid Automaton model of dyadic therapy sessions. Empathy-related properties can then be verified through Statistical Model Checking, while strategy synthesis provides guidance for shaping agent behavior. Preliminary results show that the formal model captures therapy dynamics with good fidelity and that ad-hoc strategies improve the probability of satisfying empathy requirements.
As emotional support chatbots have recently gained significant traction across both research and industry, a common evaluation strategy has emerged: use help-seeker simulators to interact with supporter chatbots. However, current simulators suffer from two critical limitations: (1) they fail to capture the behavioral diversity of real-world seekers, often portraying them as overly cooperative, and (2) they lack the controllability required to simulate specific seeker profiles. To address these challenges, we present a controllable seeker simulator driven by nine psychological and linguistic features that underpin seeker behavior. Using authentic Reddit conversations, we train our model via a Mixture-of-Experts (MoE) architecture, which effectively differentiates diverse seeker behaviors into specialized parameter subspaces, thereby enhancing fine-grained controllability. Our simulator achieves superior profile adherence and behavioral diversity compared to existing approaches. Furthermore, evaluating 7 prominent supporter models with our system uncovers previously obscured performance degradations. These findings underscore the utility of our framework in providing a more faithful and stress-tested evaluation for emotional support chatbots.