Zero Shot Object Detection


Zero shot object detection is the process of detecting objects in images without using any labeled examples.

DISTIL: Data-Free Inversion of Suspicious Trojan Inputs via Latent Diffusion

Add code
Jul 30, 2025
Viaarxiv icon

Region-based Cluster Discrimination for Visual Representation Learning

Add code
Jul 26, 2025
Viaarxiv icon

Task-Specific Zero-shot Quantization-Aware Training for Object Detection

Add code
Jul 22, 2025
Viaarxiv icon

OpenNav: Open-World Navigation with Multimodal Large Language Models

Add code
Jul 24, 2025
Viaarxiv icon

FishDet-M: A Unified Large-Scale Benchmark for Robust Fish Detection and CLIP-Guided Model Selection in Diverse Aquatic Visual Domains

Add code
Jul 23, 2025
Viaarxiv icon

Constructing Ophthalmic MLLM for Positioning-diagnosis Collaboration Through Clinical Cognitive Chain Reasoning

Add code
Jul 23, 2025
Viaarxiv icon

Interpreting Biomedical VLMs on High-Imbalance Out-of-Distributions: An Insight into BiomedCLIP on Radiology

Add code
Jun 17, 2025
Viaarxiv icon

Locality-Aware Zero-Shot Human-Object Interaction Detection

Add code
May 26, 2025
Viaarxiv icon

Dataset of News Articles with Provenance Metadata for Media Relevance Assessment

Add code
Jun 11, 2025
Viaarxiv icon

Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models

Add code
May 27, 2025
Viaarxiv icon