Abstract:Hurricanes cause widespread destruction, resulting in diverse damage types and severities that require timely and accurate assessment for effective disaster response. While traditional single-label classification methods fall short of capturing the complexity of post-hurricane damage, this study introduces a novel multi-label classification framework for assessing damage using aerial imagery. The proposed approach integrates a feature extraction module based on ResNet and a class-specific attention mechanism to identify multiple damage types within a single image. Using the Rescuenet dataset from Hurricane Michael, the proposed method achieves a mean average precision of 90.23%, outperforming existing baseline methods. This framework enhances post-hurricane damage assessment, enabling more targeted and efficient disaster response and contributing to future strategies for disaster mitigation and resilience. This paper has been accepted at the ASCE International Conference on Computing in Civil Engineering (i3CE 2025), and the camera-ready version will appear in the official conference proceedings.
Abstract:Accurate short-term streamflow and flood forecasting are critical for mitigating river flood impacts, especially given the increasing climate variability. Machine learning-based streamflow forecasting relies on large streamflow datasets derived from rating curves. Uncertainties in rating curve modeling could introduce errors to the streamflow data and affect the forecasting accuracy. This study proposes a streamflow forecasting method that addresses these data errors, enhancing the accuracy of river flood forecasting and flood modeling, thereby reducing flood-related risk. A convolutional recurrent neural network is used to capture spatiotemporal patterns, coupled with residual error learning and forecasting. The neural network outperforms commonly used forecasting models over 1-6 hours of forecasting horizons, and the residual error learners can further correct the residual errors. This provides a more reliable tool for river flood forecasting and climate adaptation in this critical 1-6 hour time window for flood risk mitigation efforts.