Abstract:Effective waste sorting is critical for sustainable recycling, yet AI research in this domain continues to lag behind commercial systems due to limited datasets and reliance on legacy object detectors. In this work, we advance AI-driven waste detection by establishing strong baselines and introducing an ensemble-based semi-supervised learning framework. We first benchmark state-of-the-art Open-Vocabulary Object Detection (OVOD) models on the real-world ZeroWaste dataset, demonstrating that while class-only prompts perform poorly, LLM-optimized prompts significantly enhance zero-shot accuracy. Next, to address domain-specific limitations, we fine-tune modern transformer-based detectors, achieving a new baseline of 51.6 mAP. We then propose a soft pseudo-labeling strategy that fuses ensemble predictions using spatial and consensus-aware weighting, enabling robust semi-supervised training. Applied to the unlabeled ZeroWaste-s subset, our pseudo-annotations achieve performance gains that surpass fully supervised training, underscoring the effectiveness of scalable annotation pipelines. Our work contributes to the research community by establishing rigorous baselines, introducing a robust ensemble-based pseudo-labeling pipeline, generating high-quality annotations for the unlabeled ZeroWaste-s subset, and systematically evaluating OVOD models under real-world waste sorting conditions. Our code is available at: https://github.com/h-abid97/robust-waste-detection.
Abstract:Segmentation in dense visual scenes poses significant challenges due to occlusions, background clutter, and scale variations. To address this, we introduce PerSense, an end-to-end, training-free, and model-agnostic one-shot framework for Personalized instance Segmentation in dense images. PerSense employs a novel Instance Detection Module (IDM) that leverages density maps (DMs) to generate instance-level candidate point prompts, followed by a Point Prompt Selection Module (PPSM) that filters false positives via adaptive thresholding and spatial gating. A feedback mechanism further enhances segmentation by automatically selecting effective exemplars to improve DM quality. We additionally present PerSense++, an enhanced variant that incorporates three additional components to improve robustness in cluttered scenes: (i) a diversity-aware exemplar selection strategy that leverages feature and scale diversity for better DM generation; (ii) a hybrid IDM combining contour and peak-based prompt generation for improved instance separation within complex density patterns; and (iii) an Irrelevant Mask Rejection Module (IMRM) that discards spatially inconsistent masks using outlier analysis. Finally, to support this underexplored task, we introduce PerSense-D, a dedicated benchmark for personalized segmentation in dense images. Extensive experiments across multiple benchmarks demonstrate that PerSense++ outperforms existing methods in dense settings.
Abstract:Leveraging large-scale pre-training, vision foundational models showcase notable performance benefits. While recent years have witnessed significant advancements in segmentation algorithms, existing models still face challenges to automatically segment personalized instances in dense and crowded scenarios. The primary factor behind this limitation stems from bounding box-based detections, which are constrained by occlusions, background clutter, and object orientation, particularly when dealing with dense images. To this end, we propose PerSense, an end-to-end, training-free, and model-agnostic one-shot framework to address the personalized instance segmentation in dense images. Towards developing this framework, we make following core contributions. (a) We propose an Instance Detection Module (IDM) and leverage a Vision-Language Model, a grounding object detector, and a few-shot object counter (FSOC) to realize a new baseline. (b) To tackle false positives within candidate point prompts, we design Point Prompt Selection Module (PPSM). Both IDM and PPSM transform density maps from FSOC into personalized instance-level point prompts for segmentation and offer a seamless integration in our model-agnostic framework. (c) We introduce a feedback mechanism which enables PerSense to harness the full potential of FSOC by automating the exemplar selection process. (d) To promote algorithmic advances and effective tools for this relatively underexplored task, we introduce PerSense-D, a dataset exclusive to personalized instance segmentation in dense images. We validate the effectiveness of PerSense on the task of personalized instance segmentation in dense images on PerSense-D and comparison with SOTA. Additionally, our qualitative findings demonstrate the adaptability of our framework to images captured in-the-wild.