Large Language Models (LLMs) have achieved significant success in complex reasoning but remain bottlenecked by reliance on expert-annotated data and external verifiers. While existing self-evolution paradigms aim to bypass these constraints, they often fail to identify the optimal learning zone and risk reinforcing collective hallucinations and incorrect priors through flawed internal feedback. To address these challenges, we propose \underline{A}utonomous \underline{E}volutionary \underline{R}easoning \underline{O}ptimization (AERO), an unsupervised framework that achieves autonomous reasoning evolution by internalizing self-questioning, answering, and criticism within a synergistic dual-loop system. Inspired by the \textit{Zone of Proximal Development (ZPD)} theory, AERO utilizes entropy-based positioning to target the ``solvability gap'' and employs Independent Counterfactual Correction for robust verification. Furthermore, we introduce a Staggered Training Strategy to synchronize capability growth across functional roles and prevent curriculum collapse. Extensive evaluations across nine benchmarks spanning three domains demonstrate that AERO achieves average performance improvements of 4.57\% on Qwen3-4B-Base and 5.10\% on Qwen3-8B-Base, outperforming competitive baselines. Code is available at https://github.com/mira-ai-lab/AERO.
Large Language Models (LLMs) have demonstrated strong potential in complex reasoning, yet their progress remains fundamentally constrained by reliance on massive high-quality human-curated tasks and labels, either through supervised fine-tuning (SFT) or reinforcement learning (RL) on reasoning-specific data. This dependence renders supervision-heavy training paradigms increasingly unsustainable, with signs of diminishing scalability already evident in practice. To overcome this limitation, we introduce CPMöbius (CPMobius), a collaborative Coach-Player paradigm for data-free reinforcement learning of reasoning models. Unlike traditional adversarial self-play, CPMöbius, inspired by real world human sports collaboration and multi-agent collaboration, treats the Coach and Player as independent but cooperative roles. The Coach proposes instructions targeted at the Player's capability and receives rewards based on changes in the Player's performance, while the Player is rewarded for solving the increasingly instructive tasks generated by the Coach. This cooperative optimization loop is designed to directly enhance the Player's mathematical reasoning ability. Remarkably, CPMöbius achieves substantial improvement without relying on any external training data, outperforming existing unsupervised approaches. For example, on Qwen2.5-Math-7B-Instruct, our method improves accuracy by an overall average of +4.9 and an out-of-distribution average of +5.4, exceeding RENT by +1.5 on overall accuracy and R-zero by +4.2 on OOD accuracy.
Unsupervised Skill Discovery (USD) aims to autonomously learn a diverse set of skills without relying on extrinsic rewards. One of the most common USD approaches is to maximize the Mutual Information (MI) between skill latent variables and states. However, MI-based methods tend to favor simple, static skills due to their invariance properties, limiting the discovery of dynamic, task-relevant behaviors. Distance-Maximizing Skill Discovery (DSD) promotes more dynamic skills by leveraging state-space distances, yet still fall short in encouraging comprehensive skill sets that engage all controllable factors or entities in the environment. In this work, we introduce SUSD, a novel framework that harnesses the compositional structure of environments by factorizing the state space into independent components (e.g., objects or controllable entities). SUSD allocates distinct skill variables to different factors, enabling more fine-grained control on the skill discovery process. A dynamic model also tracks learning across factors, adaptively steering the agent's focus toward underexplored factors. This structured approach not only promotes the discovery of richer and more diverse skills, but also yields a factorized skill representation that enables fine-grained and disentangled control over individual entities which facilitates efficient training of compositional downstream tasks via Hierarchical Reinforcement Learning (HRL). Our experimental results across three environments, with factors ranging from 1 to 10, demonstrate that our method can discover diverse and complex skills without supervision, significantly outperforming existing unsupervised skill discovery methods in factorized and complex environments. Code is publicly available at: https://github.com/hadi-hosseini/SUSD.
We consider the problem of unsupervised skill segmentation and hierarchical structure discovery in reinforcement learning. While recent approaches have sought to segment trajectories into reusable skills or options, most rely on action labels, rewards, or handcrafted annotations, limiting their applicability. We propose a method that segments unlabelled trajectories into skills and induces a hierarchical structure over them using a grammar-based approach. The resulting hierarchy captures both low-level behaviours and their composition into higher-level skills. We evaluate our approach in high-dimensional, pixel-based environments, including Craftax and the full, unmodified version of Minecraft. Using metrics for skill segmentation, reuse, and hierarchy quality, we find that our method consistently produces more structured and semantically meaningful hierarchies than existing baselines. Furthermore, as a proof of concept for utility, we demonstrate that these discovered hierarchies accelerate and stabilise learning on downstream reinforcement learning tasks.
Parallelization in Reinforcement Learning is typically employed to speed up the training of a single policy, where multiple workers collect experience from an identical sampling distribution. This common design limits the potential of parallelization by neglecting the advantages of diverse exploration strategies. We propose K-Myriad, a scalable and unsupervised method that maximizes the collective state entropy induced by a population of parallel policies. By cultivating a portfolio of specialized exploration strategies, K-Myriad provides a robust initialization for Reinforcement Learning, leading to both higher training efficiency and the discovery of heterogeneous solutions. Experiments on high-dimensional continuous control tasks, with large-scale parallelization, demonstrate that K-Myriad can learn a broad set of distinct policies, highlighting its effectiveness for collective exploration and paving the way towards novel parallelization strategies.
Unsupervised pre-training can equip reinforcement learning agents with prior knowledge and accelerate learning in downstream tasks. A promising direction, grounded in human development, investigates agents that learn by setting and pursuing their own goals. The core challenge lies in how to effectively generate, select, and learn from such goals. Our focus is on broad distributions of downstream tasks where solving every task zero-shot is infeasible. Such settings naturally arise when the target tasks lie outside of the pre-training distribution or when their identities are unknown to the agent. In this work, we (i) optimize for efficient multi-episode exploration and adaptation within a meta-learning framework, and (ii) guide the training curriculum with evolving estimates of the agent's post-adaptation performance. We present ULEE, an unsupervised meta-learning method that combines an in-context learner with an adversarial goal-generation strategy that maintains training at the frontier of the agent's capabilities. On XLand-MiniGrid benchmarks, ULEE pre-training yields improved exploration and adaptation abilities that generalize to novel objectives, environment dynamics, and map structures. The resulting policy attains improved zero-shot and few-shot performance, and provides a strong initialization for longer fine-tuning processes. It outperforms learning from scratch, DIAYN pre-training, and alternative curricula.
In this paper, a general ISAC system where the base station (BS) communicates with multiple users and performs target detection is considered. Then, a sum communication rate maximization problem is formulated, subjected to the constraints of transmit power and the minimum sensing rates of users. To solve this problem, we develop a framework that leverages deep learning algorithms to provide a three-stage solution for ISAC beamforming. The three-stage beamforming optimization solution includes three modules: 1) an unsupervised learning based feature extraction algorithm is proposed to extract fixed-size latent features while keeping its essential information from the variable channel state information (CSI); 2) a reinforcement learning (RL) based beampattern optimization algorithm is proposed to search the desired beampattern according to the extracted features; 3) a supervised learning based beamforming reconstruction algorithm is proposed to reconstruct the beamforming vector from beampattern given by the RL agent. Simulation results demonstrate that the proposed three-stage solution outperforms the baseline RL algorithm by optimizing the intuitional beampattern rather than beamforming.
Active learning (AL) strategies aim to train high-performance models with minimal labeling efforts, only selecting the most informative instances for annotation. Current approaches to evaluating data informativeness predominantly focus on the data's distribution or intrinsic information content and do not directly correlate with downstream task performance, such as mean average precision (mAP) in object detection. Thus, we propose Performance-guided (i.e. mAP-guided) Reinforced Active Learning for Object Detection (MGRAL), a novel approach that leverages the concept of expected model output changes as informativeness. To address the combinatorial explosion challenge of batch sample selection and the non-differentiable correlation between model performance and selected batches, MGRAL skillfully employs a reinforcement learning-based sampling agent that optimizes selection using policy gradient with mAP improvement as reward. Moreover, to reduce the computational overhead of mAP estimation with unlabeled samples, MGRAL utilizes an unsupervised way with fast look-up tables, ensuring feasible deployment. We evaluate MGRAL's active learning performance on detection tasks over PASCAL VOC and COCO benchmarks. Our approach demonstrates the highest AL curve with convincing visualizations, establishing a new paradigm in reinforcement learning-driven active object detection.
Unsupervised Environment Design (UED) seeks to automatically generate training curricula for reinforcement learning (RL) agents, with the goal of improving generalisation and zero-shot performance. However, designing effective curricula remains a difficult problem, particularly in settings where small subsets of environment parameterisations result in significant increases in the complexity of the required policy. Current methods struggle with a difficult credit assignment problem and rely on regret approximations that fail to identify challenging levels, both of which are compounded as the size of the environment grows. We propose Dynamic Environment Generation for UED (DEGen) to enable a denser level generator reward signal, reducing the difficulty of credit assignment and allowing for UED to scale to larger environment sizes. We also introduce a new regret approximation, Maximised Negative Advantage (MNA), as a significantly improved metric to optimise for, that better identifies more challenging levels. We show empirically that MNA outperforms current regret approximations and when combined with DEGen, consistently outperforms existing methods, especially as the size of the environment grows. We have made all our code available here: https://github.com/HarryMJMead/Dynamic-Environment-Generation-for-UED.
Outlier detection (OD) aims to identify abnormal instances, known as outliers or anomalies, by learning typical patterns of normal data, or inliers. Performing OD under an unsupervised regime-without any information about anomalous instances in the training data-is challenging. A recently observed phenomenon, known as the inlier-memorization (IM) effect, where deep generative models (DGMs) tend to memorize inlier patterns during early training, provides a promising signal for distinguishing outliers. However, existing unsupervised approaches that rely solely on the IM effect still struggle when inliers and outliers are not well-separated or when outliers form dense clusters. To address these limitations, we incorporate active learning to selectively acquire informative labels, and propose IMBoost, a novel framework that explicitly reinforces the IM effect to improve outlier detection. Our method consists of two stages: 1) a warm-up phase that induces and promotes the IM effect, and 2) a polarization phase in which actively queried samples are used to maximize the discrepancy between inlier and outlier scores. In particular, we propose a novel query strategy and tailored loss function in the polarization phase to effectively identify informative samples and fully leverage the limited labeling budget. We provide a theoretical analysis showing that the IMBoost consistently decreases inlier risk while increasing outlier risk throughout training, thereby amplifying their separation. Extensive experiments on diverse benchmark datasets demonstrate that IMBoost not only significantly outperforms state-of-the-art active OD methods but also requires substantially less computational cost.