Abstract:Large Language Models (LLMs) have achieved significant success in complex reasoning but remain bottlenecked by reliance on expert-annotated data and external verifiers. While existing self-evolution paradigms aim to bypass these constraints, they often fail to identify the optimal learning zone and risk reinforcing collective hallucinations and incorrect priors through flawed internal feedback. To address these challenges, we propose \underline{A}utonomous \underline{E}volutionary \underline{R}easoning \underline{O}ptimization (AERO), an unsupervised framework that achieves autonomous reasoning evolution by internalizing self-questioning, answering, and criticism within a synergistic dual-loop system. Inspired by the \textit{Zone of Proximal Development (ZPD)} theory, AERO utilizes entropy-based positioning to target the ``solvability gap'' and employs Independent Counterfactual Correction for robust verification. Furthermore, we introduce a Staggered Training Strategy to synchronize capability growth across functional roles and prevent curriculum collapse. Extensive evaluations across nine benchmarks spanning three domains demonstrate that AERO achieves average performance improvements of 4.57\% on Qwen3-4B-Base and 5.10\% on Qwen3-8B-Base, outperforming competitive baselines. Code is available at https://github.com/mira-ai-lab/AERO.
Abstract:Knowledge graph-based retrieval-augmented generation seeks to mitigate hallucinations in Large Language Models (LLMs) caused by insufficient or outdated knowledge. However, existing methods often fail to fully exploit the prior knowledge embedded in knowledge graphs (KGs), particularly their structural information and explicit or implicit constraints. The former can enhance the faithfulness of LLMs' reasoning, while the latter can improve the reliability of response generation. Motivated by these, we propose a trustworthy reasoning framework, termed Deliberation over Priors (DP), which sufficiently utilizes the priors contained in KGs. Specifically, DP adopts a progressive knowledge distillation strategy that integrates structural priors into LLMs through a combination of supervised fine-tuning and Kahneman-Tversky optimization, thereby improving the faithfulness of relation path generation. Furthermore, our framework employs a reasoning-introspection strategy, which guides LLMs to perform refined reasoning verification based on extracted constraint priors, ensuring the reliability of response generation. Extensive experiments on three benchmark datasets demonstrate that DP achieves new state-of-the-art performance, especially a Hit@1 improvement of 13% on the ComplexWebQuestions dataset, and generates highly trustworthy responses. We also conduct various analyses to verify its flexibility and practicality. The code is available at https://github.com/reml-group/Deliberation-on-Priors.