Diffusion-based editing models have emerged as a powerful tool for semantic image and video manipulation. However, existing models lack a mechanism for smoothly controlling the intensity of text-guided edits. In standard text-conditioned generation, Classifier-Free Guidance (CFG) impacts prompt adherence, suggesting it as a potential control for edit intensity in editing models. However, we show that scaling CFG in these models does not produce a smooth transition between the input and the edited result. We attribute this behavior to the unconditional prediction, which serves as the guidance origin and dominates the generation at low guidance scales, while representing an arbitrary manipulation of the input content. To enable continuous control, we introduce Adaptive-Origin Guidance (AdaOr), a method that adjusts this standard guidance origin with an identity-conditioned adaptive origin, using an identity instruction corresponding to the identity manipulation. By interpolating this identity prediction with the standard unconditional prediction according to the edit strength, we ensure a continuous transition from the input to the edited result. We evaluate our method on image and video editing tasks, demonstrating that it provides smoother and more consistent control compared to current slider-based editing approaches. Our method incorporates an identity instruction into the standard training framework, enabling fine-grained control at inference time without per-edit procedure or reliance on specialized datasets.
Long-horizon omnimodal question answering answers questions by reasoning over text, images, audio, and video. Despite recent progress on OmniLLMs, low-resource long audio-video QA still suffers from costly dense encoding, weak fine-grained retrieval, limited proactive planning, and no clear end-to-end optimization.To address these issues, we propose OmniRAG-Agent, an agentic omnimodal QA method for budgeted long audio-video reasoning. It builds an image-audio retrieval-augmented generation module that lets an OmniLLM fetch short, relevant frames and audio snippets from external banks. Moreover, it uses an agent loop that plans, calls tools across turns, and merges retrieved evidence to answer complex queries. Furthermore, we apply group relative policy optimization to jointly improve tool use and answer quality over time. Experiments on OmniVideoBench, WorldSense, and Daily-Omni show that OmniRAG-Agent consistently outperforms prior methods under low-resource settings and achieves strong results, with ablations validating each component.
While existing multi-agent systems (MAS) can handle complex problems by enabling collaboration among multiple agents, they are often highly task-specific, relying on manually crafted agent roles and interaction prompts, which leads to increased architectural complexity and limited reusability across tasks. Moreover, most MAS communicate primarily through natural language, making them vulnerable to error accumulation and instability in long-context, multi-stage interactions within internal agent histories. In this work, we propose \textbf{Agent Primitives}, a set of reusable latent building blocks for LLM-based MAS. Inspired by neural network design, where complex models are built from reusable components, we observe that many existing MAS architectures can be decomposed into a small number of recurring internal computation patterns. Based on this observation, we instantiate three primitives: Review, Voting and Selection, and Planning and Execution. All primitives communicate internally via key-value (KV) cache, which improves both robustness and efficiency by mitigating information degradation across multi-stage interactions. To enable automatic system construction, an Organizer agent selects and composes primitives for each query, guided by a lightweight knowledge pool of previously successful configurations, forming a primitive-based MAS. Experiments show that primitives-based MAS improve average accuracy by 12.0-16.5\% over single-agent baselines, reduce token usage and inference latency by approximately 3$\times$-4$\times$ compared to text-based MAS, while incurring only 1.3$\times$-1.6$\times$ overhead relative to single-agent inference and providing more stable performance across model backbones.
Industrial Anomaly Detection (IAD) is vital for manufacturing, yet traditional methods face significant challenges: unsupervised approaches yield rough localizations requiring manual thresholds, while supervised methods overfit due to scarce, imbalanced data. Both suffer from the "One Anomaly Class, One Model" limitation. To address this, we propose Referring Industrial Anomaly Segmentation (RIAS), a paradigm leveraging language to guide detection. RIAS generates precise masks from text descriptions without manual thresholds and uses universal prompts to detect diverse anomalies with a single model. We introduce the MVTec-Ref dataset to support this, designed with diverse referring expressions and focusing on anomaly patterns, notably with 95% small anomalies. We also propose the Dual Query Token with Mask Group Transformer (DQFormer) benchmark, enhanced by Language-Gated Multi-Level Aggregation (LMA) to improve multi-scale segmentation. Unlike traditional methods using redundant queries, DQFormer employs only "Anomaly" and "Background" tokens for efficient visual-textual integration. Experiments demonstrate RIAS's effectiveness in advancing IAD toward open-set capabilities. Code: https://github.com/swagger-coder/RIAS-MVTec-Ref.
Generative text-to-image models are advancing at an unprecedented pace, continuously shifting the perceptual quality ceiling and rendering previously collected labels unreliable for newer generations. To address this, we present ELIQ, a Label-free Framework for Quality Assessment of Evolving AI-generated Images. Specifically, ELIQ focuses on visual quality and prompt-image alignment, automatically constructs positive and aspect-specific negative pairs to cover both conventional distortions and AIGC-specific distortion modes, enabling transferable supervision without human annotations. Building on these pairs, ELIQ adapts a pre-trained multimodal model into a quality-aware critic via instruction tuning and predicts two-dimensional quality using lightweight gated fusion and a Quality Query Transformer. Experiments across multiple benchmarks demonstrate that ELIQ consistently outperforms existing label-free methods, generalizes from AI-generated content (AIGC) to user-generated content (UGC) scenarios without modification, and paves the way for scalable and label-free quality assessment under continuously evolving generative models. The code will be released upon publication.
Logical anomalies are violations of predefined constraints on object quantity, spatial layout, and compositional relationships in industrial images. While prior work largely treats anomaly detection as a binary decision, such formulations cannot indicate which logical rule is broken and therefore offer limited value for quality assurance. We introduce Logical Anomaly Classification (LAC), a task that unifies anomaly detection and fine-grained violation classification in a single inference step. To tackle LAC, we propose LogiCls, a vision-language framework that decomposes complex logical constraints into a sequence of verifiable subqueries. We further present a data-centric instruction synthesis pipeline that generates chain-of-thought (CoT) supervision for these subqueries, coupling precise grounding annotations with diverse image-text augmentations to adapt vision language models (VLMs) to logic-sensitive reasoning. Training is stabilized by a difficulty-aware resampling strategy that emphasizes challenging subqueries and long tail constraint types. Extensive experiments demonstrate that LogiCls delivers robust, interpretable, and accurate industrial logical anomaly classification, providing both the predicted violation categories and their evidence trails.
Multi-subject image generation aims to synthesize images that faithfully preserve the identities of multiple reference subjects while following textual instructions. However, existing methods often suffer from identity inconsistency and limited compositional control, as they rely on diffusion models to implicitly associate text prompts with reference images. In this work, we propose Hierarchical Concept-to-Appearance Guidance (CAG), a framework that provides explicit, structured supervision from high-level concepts to fine-grained appearances. At the conceptual level, we introduce a VAE dropout training strategy that randomly omits reference VAE features, encouraging the model to rely more on robust semantic signals from a Visual Language Model (VLM) and thereby promoting consistent concept-level generation in the absence of complete appearance cues. At the appearance level, we integrate the VLM-derived correspondences into a correspondence-aware masked attention module within the Diffusion Transformer (DiT). This module restricts each text token to attend only to its matched reference regions, ensuring precise attribute binding and reliable multi-subject composition. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the multi-subject image generation, substantially improving prompt following and subject consistency.
We introduce ontology-to-tools compilation as a proof-of-principle mechanism for coupling large language models (LLMs) with formal domain knowledge. Within The World Avatar (TWA), ontological specifications are compiled into executable tool interfaces that LLM-based agents must use to create and modify knowledge graph instances, enforcing semantic constraints during generation rather than through post-hoc validation. Extending TWA's semantic agent composition framework, the Model Context Protocol (MCP) and associated agents are integral components of the knowledge graph ecosystem, enabling structured interaction between generative models, symbolic constraints, and external resources. An agent-based workflow translates ontologies into ontology-aware tools and iteratively applies them to extract, validate, and repair structured knowledge from unstructured scientific text. Using metal-organic polyhedra synthesis literature as an illustrative case, we show how executable ontological semantics can guide LLM behaviour and reduce manual schema and prompt engineering, establishing a general paradigm for embedding formal knowledge into generative systems.
Emotional expression in human speech is nuanced and compositional, often involving multiple, sometimes conflicting, affective cues that may diverge from linguistic content. In contrast, most expressive text-to-speech systems enforce a single utterance-level emotion, collapsing affective diversity and suppressing mixed or text-emotion-misaligned expression. While activation steering via latent direction vectors offers a promising solution, it remains unclear whether emotion representations are linearly steerable in TTS, where steering should be applied within hybrid TTS architectures, and how such complex emotion behaviors should be evaluated. This paper presents the first systematic analysis of activation steering for emotional control in hybrid TTS models, introducing a quantitative, controllable steering framework, and multi-rater evaluation protocols that enable composable mixed-emotion synthesis and reliable text-emotion mismatch synthesis. Our results demonstrate, for the first time, that emotional prosody and expressive variability are primarily synthesized by the TTS language module instead of the flow-matching module, and also provide a lightweight steering approach for generating natural, human-like emotional speech.
As large language model agents tackle increasingly complex long-horizon tasks, effective post-training becomes critical. Prior work faces fundamental challenges: outcome-only rewards fail to precisely attribute credit to intermediate steps, estimated step-level rewards introduce systematic noise, and Monte Carlo sampling approaches for step reward estimation incur prohibitive computational cost. Inspired by findings that only a small fraction of high-entropy tokens drive effective RL for reasoning, we propose Critical Step Optimization (CSO), which focuses preference learning on verified critical steps, decision points where alternate actions demonstrably flip task outcomes from failure to success. Crucially, our method starts from failed policy trajectories rather than expert demonstrations, directly targeting the policy model's weaknesses. We use a process reward model (PRM) to identify candidate critical steps, leverage expert models to propose high-quality alternatives, then continue execution from these alternatives using the policy model itself until task completion. Only alternatives that the policy successfully executes to correct outcomes are verified and used as DPO training data, ensuring both quality and policy reachability. This yields fine-grained, verifiable supervision at critical decisions while avoiding trajectory-level coarseness and step-level noise. Experiments on GAIA-Text-103 and XBench-DeepSearch show that CSO achieves 37% and 26% relative improvement over the SFT baseline and substantially outperforms other post-training methods, while requiring supervision at only 16% of trajectory steps. This demonstrates the effectiveness of selective verification-based learning for agent post-training.