Abstract:We investigate data augmentation for 3D object detection in autonomous driving. We utilize recent advancements in 3D reconstruction based on Gaussian Splatting for 3D object placement in driving scenes. Unlike existing diffusion-based methods that synthesize images conditioned on BEV layouts, our approach places 3D objects directly in the reconstructed 3D space with explicitly imposed geometric transformations. This ensures both the physical plausibility of object placement and highly accurate 3D pose and position annotations. Our experiments demonstrate that even by integrating a limited number of external 3D objects into real scenes, the augmented data significantly enhances 3D object detection performance and outperforms existing diffusion-based 3D augmentation for object detection. Extensive testing on the nuScenes dataset reveals that imposing high geometric diversity in object placement has a greater impact compared to the appearance diversity of objects. Additionally, we show that generating hard examples, either by maximizing detection loss or imposing high visual occlusion in camera images, does not lead to more efficient 3D data augmentation for camera-based 3D object detection in autonomous driving.
Abstract:Generative image models are increasingly being used for training data augmentation in vision tasks. In the context of automotive object detection, methods usually focus on producing augmented frames that look as realistic as possible, for example by replacing real objects with generated ones. Others try to maximize the diversity of augmented frames, for example by pasting lots of generated objects onto existing backgrounds. Both perspectives pay little attention to the locations of objects in the scene. Frame layouts are either reused with little or no modification, or they are random and disregard realism entirely. In this work, we argue that optimal data augmentation should also include realistic augmentation of layouts. We introduce a scene-aware probabilistic location model that predicts where new objects can realistically be placed in an existing scene. By then inpainting objects in these locations with a generative model, we obtain much stronger augmentation performance than existing approaches. We set a new state of the art for generative data augmentation on two automotive object detection tasks, achieving up to $2.8\times$ higher gains than the best competing approach ($+1.4$ vs. $+0.5$ mAP boost). We also demonstrate significant improvements for instance segmentation.
Abstract:Video diffusion models have achieved impressive realism and controllability but are limited by high computational demands, restricting their use on mobile devices. This paper introduces the first mobile-optimized video diffusion model. Starting from a spatio-temporal UNet from Stable Video Diffusion (SVD), we reduce memory and computational cost by reducing the frame resolution, incorporating multi-scale temporal representations, and introducing two novel pruning schema to reduce the number of channels and temporal blocks. Furthermore, we employ adversarial finetuning to reduce the denoising to a single step. Our model, coined as MobileVD, is 523x more efficient (1817.2 vs. 4.34 TFLOPs) with a slight quality drop (FVD 149 vs. 171), generating latents for a 14x512x256 px clip in 1.7 seconds on a Xiaomi-14 Pro. Our results are available at https://qualcomm-ai-research.github.io/mobile-video-diffusion/
Abstract:Recent progress in diffusion-based video editing has shown remarkable potential for practical applications. However, these methods remain prohibitively expensive and challenging to deploy on mobile devices. In this study, we introduce a series of optimizations that render mobile video editing feasible. Building upon the existing image editing model, we first optimize its architecture and incorporate a lightweight autoencoder. Subsequently, we extend classifier-free guidance distillation to multiple modalities, resulting in a threefold on-device speedup. Finally, we reduce the number of sampling steps to one by introducing a novel adversarial distillation scheme which preserves the controllability of the editing process. Collectively, these optimizations enable video editing at 12 frames per second on mobile devices, while maintaining high quality. Our results are available at https://qualcomm-ai-research.github.io/mobile-video-editing/
Abstract:Generative models have become a powerful tool for image editing tasks, including object insertion. However, these methods often lack spatial awareness, generating objects with unrealistic locations and scales, or unintentionally altering the scene background. A key challenge lies in maintaining visual coherence, which requires both a geometrically suitable object location and a high-quality image edit. In this paper, we focus on the former, creating a location model dedicated to identifying realistic object locations. Specifically, we train an autoregressive model that generates bounding box coordinates, conditioned on the background image and the desired object class. This formulation allows to effectively handle sparse placement annotations and to incorporate implausible locations into a preference dataset by performing direct preference optimization. Our extensive experiments demonstrate that our generative location model, when paired with an inpainting method, substantially outperforms state-of-the-art instruction-tuned models and location modeling baselines in object insertion tasks, delivering accurate and visually coherent results.
Abstract:Diffusion-based video editing have reached impressive quality and can transform either the global style, local structure, and attributes of given video inputs, following textual edit prompts. However, such solutions typically incur heavy memory and computational costs to generate temporally-coherent frames, either in the form of diffusion inversion and/or cross-frame attention. In this paper, we conduct an analysis of such inefficiencies, and suggest simple yet effective modifications that allow significant speed-ups whilst maintaining quality. Moreover, we introduce Object-Centric Diffusion, coined as OCD, to further reduce latency by allocating computations more towards foreground edited regions that are arguably more important for perceptual quality. We achieve this by two novel proposals: i) Object-Centric Sampling, decoupling the diffusion steps spent on salient regions or background, allocating most of the model capacity to the former, and ii) Object-Centric 3D Token Merging, which reduces cost of cross-frame attention by fusing redundant tokens in unimportant background regions. Both techniques are readily applicable to a given video editing model \textit{without} retraining, and can drastically reduce its memory and computational cost. We evaluate our proposals on inversion-based and control-signal-based editing pipelines, and show a latency reduction up to 10x for a comparable synthesis quality.
Abstract:Novel View Synthesis (NVS), which tries to produce a realistic image at the target view given source view images and their corresponding poses, is a fundamental problem in 3D Vision. As this task is heavily under-constrained, some recent work, like Zero123, tries to solve this problem with generative modeling, specifically using pre-trained diffusion models. Although this strategy generalizes well to new scenes, compared to neural radiance field-based methods, it offers low levels of flexibility. For example, it can only accept a single-view image as input, despite realistic applications often offering multiple input images. This is because the source-view images and corresponding poses are processed separately and injected into the model at different stages. Thus it is not trivial to generalize the model into multi-view source images, once they are available. To solve this issue, we try to process each pose image pair separately and then fuse them as a unified visual representation which will be injected into the model to guide image synthesis at the target-views. However, inconsistency and computation costs increase as the number of input source-view images increases. To solve these issues, the Multi-view Cross Former module is proposed which maps variable-length input data to fix-size output data. A two-stage training strategy is introduced to further improve the efficiency during training time. Qualitative and quantitative evaluation over multiple datasets demonstrates the effectiveness of the proposed method against previous approaches. The code will be released according to the acceptance.
Abstract:This work aims to improve the efficiency of text-to-image diffusion models. While diffusion models use computationally expensive UNet-based denoising operations in every generation step, we identify that not all operations are equally relevant for the final output quality. In particular, we observe that UNet layers operating on high-res feature maps are relatively sensitive to small perturbations. In contrast, low-res feature maps influence the semantic layout of the final image and can often be perturbed with no noticeable change in the output. Based on this observation, we propose Clockwork Diffusion, a method that periodically reuses computation from preceding denoising steps to approximate low-res feature maps at one or more subsequent steps. For multiple baselines, and for both text-to-image generation and image editing, we demonstrate that Clockwork leads to comparable or improved perceptual scores with drastically reduced computational complexity. As an example, for Stable Diffusion v1.5 with 8 DPM++ steps we save 32% of FLOPs with negligible FID and CLIP change.
Abstract:This paper accelerates video perception, such as semantic segmentation and human pose estimation, by levering cross-frame redundancies. Unlike the existing approaches, which avoid redundant computations by warping the past features using optical-flow or by performing sparse convolutions on frame differences, we approach the problem from a new perspective: low-bit quantization. We observe that residuals, as the difference in network activations between two neighboring frames, exhibit properties that make them highly quantizable. Based on this observation, we propose a novel quantization scheme for video networks coined as Residual Quantization. ResQ extends the standard, frame-by-frame, quantization scheme by incorporating temporal dependencies that lead to better performance in terms of accuracy vs. bit-width. Furthermore, we extend our model to dynamically adjust the bit-width proportional to the amount of changes in the video. We demonstrate the superiority of our model, against the standard quantization and existing efficient video perception models, using various architectures on semantic segmentation and human pose estimation benchmarks.
Abstract:This work aims to improve the efficiency of vision transformers (ViT). While ViTs use computationally expensive self-attention operations in every layer, we identify that these operations are highly correlated across layers -- a key redundancy that causes unnecessary computations. Based on this observation, we propose SkipAt, a method to reuse self-attention computation from preceding layers to approximate attention at one or more subsequent layers. To ensure that reusing self-attention blocks across layers does not degrade the performance, we introduce a simple parametric function, which outperforms the baseline transformer's performance while running computationally faster. We show the effectiveness of our method in image classification and self-supervised learning on ImageNet-1K, semantic segmentation on ADE20K, image denoising on SIDD, and video denoising on DAVIS. We achieve improved throughput at the same-or-higher accuracy levels in all these tasks.