Topic:Task Oriented Dialogue Systems
What is Task Oriented Dialogue Systems? Task-oriented dialogue systems are conversational agents designed to assist users in completing specific tasks or goals.
Papers and Code
Aug 12, 2025
Abstract:In digital substations, security events pose significant challenges to the sustained operation of power systems. To mitigate these challenges, the implementation of robust defense strategies is critically important. A thorough process of anomaly identification and detection in information and communication technology (ICT) frameworks is crucial to ensure secure and reliable communication and coordination between interconnected devices within digital substations. Hence, this paper addresses the critical cybersecurity challenges confronting IEC61850-based digital substations within modern smart grids, where the integration of advanced communication protocols, e.g., generic object-oriented substation event (GOOSE), has enhanced energy management and introduced significant vulnerabilities to cyberattacks. Focusing on the limitations of traditional anomaly detection systems (ADSs) in detecting threats, this research proposes a transformative approach by leveraging generative AI (GenAI) to develop robust ADSs. The primary contributions include the suggested advanced adversarial traffic mutation (AATM) technique to generate synthesized and balanced datasets for GOOSE messages, ensuring protocol compliance and enabling realistic zero-day attack pattern creation to address data scarcity. Then, the implementation of GenAI-based ADSs incorporating the task-oriented dialogue (ToD) processes has been explored for improved detection of attack patterns. Finally, a comparison of the GenAI-based ADS with machine learning (ML)-based ADSs has been implemented to showcase the outperformance of the GenAI-based frameworks considering the AATM-generated GOOSE datasets and standard/advanced performance evaluation metrics.
* 28 pages, 12 figures
Via

Jul 29, 2025
Abstract:Intent recognition is a fundamental component in task-oriented dialogue systems (TODS). Determining user intents and detecting whether an intent is Out-of-Scope (OOS) is crucial for TODS to provide reliable responses. However, traditional TODS require large amount of annotated data. In this work we propose a hybrid approach to combine BERT and LLMs in zero and few-shot settings to recognize intents and detect OOS utterances. Our approach leverages LLMs generalization power and BERT's computational efficiency in such scenarios. We evaluate our method on multi-party conversation corpora and observe that sharing information from BERT outputs to LLMs leads to system performance improvement.
* Accepted for publication at SIGDIAL 2025
Via

Jul 24, 2025
Abstract:Spoken language models (SLMs) have seen rapid progress in recent years, along with the development of numerous benchmarks for evaluating their performance. However, most existing benchmarks primarily focus on evaluating whether SLMs can perform complex tasks comparable to those tackled by large language models (LLMs), often failing to align with how users naturally interact in real-world conversational scenarios. In this paper, we propose TELEVAL, a dynamic benchmark specifically designed to evaluate SLMs' effectiveness as conversational agents in realistic Chinese interactive settings. TELEVAL defines three evaluation dimensions: Explicit Semantics, Paralinguistic and Implicit Semantics, and System Abilities. It adopts a dialogue format consistent with real-world usage and evaluates text and audio outputs separately. TELEVAL particularly focuses on the model's ability to extract implicit cues from user speech and respond appropriately without additional instructions. Our experiments demonstrate that despite recent progress, existing SLMs still have considerable room for improvement in natural conversational tasks. We hope that TELEVAL can serve as a user-centered evaluation framework that directly reflects the user experience and contributes to the development of more capable dialogue-oriented SLMs.
Via

Jul 02, 2025
Abstract:Task-oriented dialogue (ToD) systems are designed to help users achieve specific goals through natural language interaction. While recent advances in large language models (LLMs) have significantly improved linguistic fluency and contextual understanding, building effective and emotionally intelligent ToD systems remains a complex challenge. Effective ToD systems must optimise for task success, emotional understanding and responsiveness, and precise information conveyance, all within inherently noisy and ambiguous conversational environments. In this work, we investigate architectural, representational, optimisational as well as emotional considerations of ToD systems. We set up systems covering these design considerations with a challenging evaluation environment composed of a natural-language user simulator coupled with an imperfect natural language understanding module. We propose \textbf{LUSTER}, an \textbf{L}LM-based \textbf{U}nified \textbf{S}ystem for \textbf{T}ask-oriented dialogue with \textbf{E}nd-to-end \textbf{R}einforcement learning with both short-term (user sentiment) and long-term (task success) rewards. Our findings demonstrate that combining LLM capability with structured reward modelling leads to more resilient and emotionally responsive ToD systems, offering a practical path forward for next-generation conversational agents.
* 19 pages, 6 figures
Via

Jul 02, 2025
Abstract:Out-of-scope (OOS) intent detection is a critical challenge in task-oriented dialogue systems (TODS), as it ensures robustness to unseen and ambiguous queries. In this work, we propose a novel but simple modular framework that combines uncertainty modeling with fine-tuned large language models (LLMs) for efficient and accurate OOS detection. The first step applies uncertainty estimation to the output of an in-scope intent detection classifier, which is currently deployed in a real-world TODS handling tens of thousands of user interactions daily. The second step then leverages an emerging LLM-based approach, where a fine-tuned LLM is triggered to make a final decision on instances with high uncertainty. Unlike prior approaches, our method effectively balances computational efficiency and performance, combining traditional approaches with LLMs and yielding state-of-the-art results on key OOS detection benchmarks, including real-world OOS data acquired from a deployed TODS.
Via

May 22, 2025
Abstract:Small large language models (sLLMs) offer the advantage of being lightweight and efficient, which makes them suitable for resource-constrained environments. However, sLLMs often struggle to maintain topic consistency in task-oriented dialogue systems, which is critical for scenarios such as service chatbots. Specifically, it is important to ensure that the model denies off-topic or malicious inputs and adheres to its intended functionality so as to prevent potential misuse and uphold reliability. Towards this, existing activation engineering approaches have been proposed to manipulate internal activations during inference. While these methods are effective in certain scenarios, our preliminary experiments reveal their limitations in ensuring topic adherence. Therefore, to address this, we propose a novel approach termed Entropy-scaled Steering vectors for Topic Maintenance (EnSToM). EnSToM dynamically adjusts the steering intensity based on input uncertainty, which allows the model to handle off-topic distractors effectively while preserving on-topic accuracy. Our experiments demonstrate that EnSToM achieves significant performance gain with a relatively small data size compared to fine-tuning approaches. By improving topic adherence without compromising efficiency, our approach provides a robust solution for enhancing sLLM-based dialogue systems.
* Accepted at ACL 2025 (Findings, long paper)
Via

May 26, 2025
Abstract:Existing Task-Oriented Dialogue (TOD) systems primarily focus on single-session dialogues, limiting their effectiveness in long-term memory augmentation. To address this challenge, we introduce a MS-TOD dataset, the first multi-session TOD dataset designed to retain long-term memory across sessions, enabling fewer turns and more efficient task completion. This defines a new benchmark task for evaluating long-term memory in multi-session TOD. Based on this new dataset, we propose a Memory-Active Policy (MAP) that improves multi-session dialogue efficiency through a two-stage approach. 1) Memory-Guided Dialogue Planning retrieves intent-aligned history, identifies key QA units via a memory judger, refines them by removing redundant questions, and generates responses based on the reconstructed memory. 2) Proactive Response Strategy detects and correct errors or omissions, ensuring efficient and accurate task completion. We evaluate MAP on MS-TOD dataset, focusing on response quality and effectiveness of the proactive strategy. Experiments on MS-TOD demonstrate that MAP significantly improves task success and turn efficiency in multi-session scenarios, while maintaining competitive performance on conventional single-session tasks.
Via

Jun 11, 2025
Abstract:Large language models (LLMs) have advanced conversational AI assistants. However, systematically evaluating how well these assistants apply personalization--adapting to individual user preferences while completing tasks--remains challenging. Existing personalization benchmarks focus on chit-chat, non-conversational tasks, or narrow domains, failing to capture the complexities of personalized task-oriented assistance. To address this, we introduce PersonaLens, a comprehensive benchmark for evaluating personalization in task-oriented AI assistants. Our benchmark features diverse user profiles equipped with rich preferences and interaction histories, along with two specialized LLM-based agents: a user agent that engages in realistic task-oriented dialogues with AI assistants, and a judge agent that employs the LLM-as-a-Judge paradigm to assess personalization, response quality, and task success. Through extensive experiments with current LLM assistants across diverse tasks, we reveal significant variability in their personalization capabilities, providing crucial insights for advancing conversational AI systems.
* Accepted to ACL 2025 Findings
Via

May 08, 2025
Abstract:The emergence of instruction-tuned large language models (LLMs) has advanced the field of dialogue systems, enabling both realistic user simulations and robust multi-turn conversational agents. However, existing research often evaluates these components in isolation-either focusing on a single user simulator or a specific system design-limiting the generalisability of insights across architectures and configurations. In this work, we propose clem todd (chat-optimized LLMs for task-oriented dialogue systems development), a flexible framework for systematically evaluating dialogue systems under consistent conditions. clem todd enables detailed benchmarking across combinations of user simulators and dialogue systems, whether existing models from literature or newly developed ones. It supports plug-and-play integration and ensures uniform datasets, evaluation metrics, and computational constraints. We showcase clem todd's flexibility by re-evaluating existing task-oriented dialogue systems within this unified setup and integrating three newly proposed dialogue systems into the same evaluation pipeline. Our results provide actionable insights into how architecture, scale, and prompting strategies affect dialogue performance, offering practical guidance for building efficient and effective conversational AI systems.
* 30 pages
Via

Apr 25, 2025
Abstract:In task-oriented dialogue (TOD) systems, Slot Schema Induction (SSI) is essential for automatically identifying key information slots from dialogue data without manual intervention. This paper presents a novel state-of-the-art (SoTA) approach that formulates SSI as a text generation task, where a language model incrementally constructs and refines a slot schema over a stream of dialogue data. To develop this approach, we present a fully automatic LLM-based TOD simulation method that creates data with high-quality state labels for novel task domains. Furthermore, we identify issues in SSI evaluation due to data leakage and poor metric alignment with human judgment. We resolve these by creating new evaluation data using our simulation method with human guidance and correction, as well as designing improved evaluation metrics. These contributions establish a foundation for future SSI research and advance the SoTA in dialogue understanding and system development.
* Accepted (B) to TACL 2025
Via
