Abstract:Intent detection, a critical component in task-oriented dialogue (TOD) systems, faces significant challenges in adapting to the rapid influx of integrable tools with complex interrelationships. Existing approaches, such as zero-shot reformulations and LLM-based dynamic recognition, struggle with performance degradation when encountering unseen intents, leading to erroneous task routing. To enhance the model's generalization performance on unseen tasks, we employ Reinforcement Learning (RL) combined with a Reward-based Curriculum Sampling (RCS) during Group Relative Policy Optimization (GRPO) training in intent detection tasks. Experiments demonstrate that RL-trained models substantially outperform supervised fine-tuning (SFT) baselines in generalization. Besides, the introduction of the RCS, significantly bolsters the effectiveness of RL in intent detection by focusing the model on challenging cases during training. Moreover, incorporating Chain-of-Thought (COT) processes in RL notably improves generalization in complex intent detection tasks, underscoring the importance of thought in challenging scenarios. This work advances the generalization of intent detection tasks, offering practical insights for deploying adaptable dialogue systems.
Abstract:Radio frequency (RF) propagation modeling poses unique electromagnetic simulation challenges. While recent neural representations have shown success in visible spectrum rendering, the fundamentally different scales and physics of RF signals require novel modeling paradigms. In this paper, we introduce RFScape, a novel framework that bridges the gap between neural scene representation and RF propagation modeling. Our key insight is that complex RF-object interactions can be captured through object-centric neural representations while preserving the composability of traditional ray tracing. Unlike previous approaches that either rely on crude geometric approximations or require dense spatial sampling of entire scenes, RFScape learns per-object electromagnetic properties and enables flexible scene composition. Through extensive evaluation on real-world RF testbeds, we demonstrate that our approach achieves 13 dB improvement over conventional ray tracing and 5 dB over state-of-the-art neural baselines in modeling accuracy while requiring only sparse training samples.