Story visualization is the task of generating coherent and aligned sequence of images given a sequence of textual captions representing description of a story. It mainly consists of two tasks: story generation and story continuation, where story continuation uses additional ground-truth information in the form of the first frame.
Generating long-form audio-visual stories from a short user prompt remains challenging due to an intent-execution gap, where high-level narrative intent must be preserved across coherent, shot-level multimodal generation over long horizons. Existing approaches typically rely on feed-forward pipelines or prompt-only refinement, which often leads to semantic drift and identity inconsistency as sequences grow longer. We address this challenge by formulating storytelling as a closed-loop constraint enforcement problem and propose MUSE, a multi-agent framework that coordinates generation through an iterative plan-execute-verify-revise loop. MUSE translates narrative intent into explicit, machine-executable controls over identity, spatial composition, and temporal continuity, and applies targeted multimodal feedback to correct violations during generation. To evaluate open-ended storytelling without ground-truth references, we introduce MUSEBench, a reference-free evaluation protocol validated by human judgments. Experiments demonstrate that MUSE substantially improves long-horizon narrative coherence, cross-modal identity consistency, and cinematic quality compared with representative baselines.
Generating coherent visual stories requires maintaining subject identity across multiple images while preserving frame-specific semantics. Recent training-free methods concatenate identity and frame prompts into a unified representation, but this often introduces inter-frame semantic interference that weakens identity preservation in complex stories. We propose ReDiStory, a training-free framework that improves multi-frame story generation via inference-time prompt embedding reorganization. ReDiStory explicitly decomposes text embeddings into identity-related and frame-specific components, then decorrelates frame embeddings by suppressing shared directions across frames. This reduces cross-frame interference without modifying diffusion parameters or requiring additional supervision. Under identical diffusion backbones and inference settings, ReDiStory improves identity consistency while maintaining prompt fidelity. Experiments on the ConsiStory+ benchmark show consistent gains over 1Prompt1Story on multiple identity consistency metrics. Code is available at: https://github.com/YuZhenyuLindy/ReDiStory
Large multimodal models have enabled one-click storybook generation, where users provide a short description and receive a multi-page illustrated story. However, the underlying story state, such as characters, world settings, and page-level objects, remains implicit, making edits coarse-grained and often breaking visual consistency. We present StoryState, an agent-based orchestration layer that introduces an explicit and editable story state on top of training-free text-to-image generation. StoryState represents each story as a structured object composed of a character sheet, global settings, and per-page scene constraints, and employs a small set of LLM agents to maintain this state and derive 1Prompt1Story-style prompts for generation and editing. Operating purely through prompts, StoryState is model-agnostic and compatible with diverse generation backends. System-level experiments on multi-page editing tasks show that StoryState enables localized page edits, improves cross-page consistency, and reduces unintended changes, interaction turns, and editing time compared to 1Prompt1Story, while approaching the one-shot consistency of Gemini Storybook. Code is available at https://github.com/YuZhenyuLindy/StoryState
The integration of visual information into Large Language Models (LLMs) has enabled Multimodal LLMs (MLLMs), but the quadratic memory and computational costs of Transformer architectures remain a bottleneck. Existing KV cache eviction strategies fail to address the heterogeneous attention distributions between visual and text tokens, leading to suboptimal efficiency or degraded performance. In this paper, we propose Hierarchical Adaptive Eviction (HAE), a KV cache eviction framework that optimizes text-visual token interaction in MLLMs by implementing Dual-Attention Pruning during pre-filling (leveraging visual token sparsity and attention variance) and a Dynamic Decoding Eviction Strategy (inspired by OS Recycle Bins) during decoding. HAE minimizes KV cache usage across layers, reduces computational overhead via index broadcasting, and theoretically ensures superior information integrity and lower error bounds compared to greedy strategies, enhancing efficiency in both comprehension and generation tasks. Empirically, HAE reduces KV-Cache memory by 41\% with minimal accuracy loss (0.3\% drop) in image understanding tasks and accelerates story generation inference by 1.5x while maintaining output quality on Phi3.5-Vision-Instruct model.
Maintaining visual and semantic consistency across frames is a key challenge in text-to-image storytelling. Existing training-free methods, such as One-Prompt-One-Story, concatenate all prompts into a single sequence, which often induces strong embedding correlation and leads to color leakage, background blending, and identity drift. We propose DeCorStory, a training-free inference-time framework that explicitly reduces inter-frame semantic interference. DeCorStory applies Gram-Schmidt prompt embedding decorrelation to orthogonalize frame-level semantics, followed by singular value reweighting to strengthen prompt-specific information and identity-preserving cross-attention to stabilize character identity during diffusion. The method requires no model modification or fine-tuning and can be seamlessly integrated into existing diffusion pipelines. Experiments demonstrate consistent improvements in prompt-image alignment, identity consistency, and visual diversity, achieving state-of-the-art performance among training-free baselines. Code is available at: https://github.com/YuZhenyuLindy/DeCorStory
Video storytelling is often constrained by available material, limiting creative expression and leaving undesired narrative gaps. Generative video offers a new way to address these limitations by augmenting captured media with tailored visuals. To explore this potential, we interviewed eight video creators to identify opportunities and challenges in integrating generative video into their workflows. Building on these insights and established filmmaking principles, we developed Vidmento, a tool for authoring hybrid video stories that combine captured and generated media through context-aware expansion. Vidmento surfaces opportunities for story development, generates clips that blend stylistically and narratively with surrounding media, and provides controls for refinement. In a study with 12 creators, Vidmento supported narrative development and exploration by systematically expanding initial materials with generative media, enabling expressive video storytelling aligned with creative intent. We highlight how creators bridge story gaps with generative content and where they find this blending capability most valuable.
We propose a novel Unmanned Aerial Vehicles (UAV) assisted creative capture system that leverages diffusion models to interpret high-level natural language prompts and automatically generate optimal flight trajectories for cinematic video recording. Instead of manually piloting the drone, the user simply describes the desired shot (e.g., "orbit around me slowly from the right and reveal the background waterfall"). Our system encodes the prompt along with an initial visual snapshot from the onboard camera, and a diffusion model samples plausible spatio-temporal motion plans that satisfy both the scene geometry and shot semantics. The generated flight trajectory is then executed autonomously by the UAV to record smooth, repeatable video clips that match the prompt. User evaluation using NASA-TLX showed a significantly lower overall workload with our interface (M = 21.6) compared to a traditional remote controller (M = 58.1), demonstrating a substantial reduction in perceived effort. Mental demand (M = 11.5 vs. 60.5) and frustration (M = 14.0 vs. 54.5) were also markedly lower for our system, confirming clear usability advantages in autonomous text-driven flight control. This project demonstrates a new interaction paradigm: text-to-cinema flight, where diffusion models act as the "creative operator" converting story intentions directly into aerial motion.
As language-model agents evolve from passive chatbots into proactive assistants that handle personal data, evaluating their adherence to social norms becomes increasingly critical, often through the lens of Contextual Integrity (CI). However, existing CI benchmarks are largely text-centric and primarily emphasize negative refusal scenarios, overlooking multimodal privacy risks and the fundamental trade-off between privacy and utility. In this paper, we introduce MPCI-Bench, the first Multimodal Pairwise Contextual Integrity benchmark for evaluating privacy behavior in agentic settings. MPCI-Bench consists of paired positive and negative instances derived from the same visual source and instantiated across three tiers: normative Seed judgments, context-rich Story reasoning, and executable agent action Traces. Data quality is ensured through a Tri-Principle Iterative Refinement pipeline. Evaluations of state-of-the-art multimodal models reveal systematic failures to balance privacy and utility and a pronounced modality leakage gap, where sensitive visual information is leaked more frequently than textual information. We will open-source MPCI-Bench to facilitate future research on agentic CI.
Generating structured narrations for real-world e-commerce videos requires models to perceive fine-grained visual details and organize them into coherent, high-level stories--capabilities that existing approaches struggle to unify. We introduce the E-commerce Hierarchical Video Captioning (E-HVC) dataset with dual-granularity, temporally grounded annotations: a Temporal Chain-of-Thought that anchors event-level observations and Chapter Summary that compose them into concise, story-centric summaries. Rather than directly prompting chapters, we adopt a staged construction that first gathers reliable linguistic and visual evidence via curated ASR and frame-level descriptions, then refines coarse annotations into precise chapter boundaries and titles conditioned on the Temporal Chain-of-Thought, yielding fact-grounded, time-aligned narratives. We also observe that e-commerce videos are fast-paced and information-dense, with visual tokens dominating the input sequence. To enable efficient training while reducing input tokens, we propose the Scene-Primed ASR-anchored Compressor (SPA-Compressor), which compresses multimodal tokens into hierarchical scene and event representations guided by ASR semantic cues. Built upon these designs, our HiVid-Narrator framework achieves superior narrative quality with fewer input tokens compared to existing methods.
Maintaining consistent characters, props, and environments across multiple shots is a central challenge in narrative video generation. Existing models can produce high-quality short clips but often fail to preserve entity identity and appearance when scenes change or when entities reappear after long temporal gaps. We present VideoMemory, an entity-centric framework that integrates narrative planning with visual generation through a Dynamic Memory Bank. Given a structured script, a multi-agent system decomposes the narrative into shots, retrieves entity representations from memory, and synthesizes keyframes and videos conditioned on these retrieved states. The Dynamic Memory Bank stores explicit visual and semantic descriptors for characters, props, and backgrounds, and is updated after each shot to reflect story-driven changes while preserving identity. This retrieval-update mechanism enables consistent portrayal of entities across distant shots and supports coherent long-form generation. To evaluate this setting, we construct a 54-case multi-shot consistency benchmark covering character-, prop-, and background-persistent scenarios. Extensive experiments show that VideoMemory achieves strong entity-level coherence and high perceptual quality across diverse narrative sequences.