Hate speech detection is commonly framed as a direct binary classification problem despite being a composite concept defined through multiple interacting factors that vary across legal frameworks, platform policies, and annotation guidelines. As a result, supervised models often overfit dataset-specific definitions and exhibit limited robustness under domain shift and annotation noise. We introduce xList-Hate, a diagnostic framework that decomposes hate speech detection into a checklist of explicit, concept-level questions grounded in widely shared normative criteria. Each question is independently answered by a large language model (LLM), producing a binary diagnostic representation that captures hateful content features without directly predicting the final label. These diagnostic signals are then aggregated by a lightweight, fully interpretable decision tree, yielding transparent and auditable predictions. We evaluate it across multiple hate speech benchmarks and model families, comparing it against zero-shot LLM classification and in-domain supervised fine-tuning. While supervised methods typically maximize in-domain performance, we consistently improves cross-dataset robustness and relative performance under domain shift. In addition, qualitative analysis of disagreement cases provides evidence that the framework can be less sensitive to certain forms of annotation inconsistency and contextual ambiguity. Crucially, the approach enables fine-grained interpretability through explicit decision paths and factor-level analysis. Our results suggest that reframing hate speech detection as a diagnostic reasoning task, rather than a monolithic classification problem, provides a robust, explainable, and extensible alternative for content moderation.
We evaluate two non-autoregressive architectures, StyleTTS2 and F5-TTS, to address the spontaneous nature of in-the-wild speech. Our models utilize flexible duration modeling to improve prosodic naturalness. To handle acoustic noise, we implement a multi-stage enhancement pipeline using the Sidon model, which significantly outperforms standard Demucs in signal quality. Experimental results show that finetuning enhanced audios yields superior robustness, achieving up to 4.21 UTMOS and 3.47 DNSMOS. Furthermore, we analyze the impact of reference prompt quality and length on zero-shot synthesis performance, demonstrating the effectiveness of our approach for realistic speech generation.
We propose WaveTrainerFit, a neural vocoder that performs high-quality waveform generation from data-driven features such as SSL features. WaveTrainerFit builds upon the WaveFit vocoder, which integrates diffusion model and generative adversarial network. Furthermore, the proposed method incorporates the following key improvements: 1. By introducing trainable priors, the inference process starts from noise close to the target speech instead of Gaussian noise. 2. Reference-aware gain adjustment is performed by imposing constraints on the trainable prior to matching the speech energy. These improvements are expected to reduce the complexity of waveform modeling from data-driven features, enabling high-quality waveform generation with fewer inference steps. Through experiments, we showed that WaveTrainerFit can generate highly natural waveforms with improved speaker similarity from data-driven features, while requiring fewer iterations than WaveFit. Moreover, we showed that the proposed method works robustly with respect to the depth at which SSL features are extracted. Code and pre-trained models are available from https://github.com/line/WaveTrainerFit.
The lack of impaired speech data hinders advancements in the development of inclusive speech technologies, particularly in low-resource languages such as Akan. To address this gap, this study presents a curated corpus of speech samples from native Akan speakers with speech impairment. The dataset comprises of 50.01 hours of audio recordings cutting across four classes of impaired speech namely stammering, cerebral palsy, cleft palate, and stroke induced speech disorder. Recordings were done in controlled supervised environments were participants described pre-selected images in their own words. The resulting dataset is a collection of audio recordings, transcriptions, and associated metadata on speaker demographics, class of impairment, recording environment and device. The dataset is intended to support research in low-resource automatic disordered speech recognition systems and assistive speech technology.
Although diffusion-based, non-autoregressive text-to-speech (TTS) systems have demonstrated impressive zero-shot synthesis capabilities, their efficacy is still hindered by two key challenges: the difficulty of text-speech alignment modeling and the high computational overhead of the iterative denoising process. To address these limitations, we propose ARCHI-TTS that features a dedicated semantic aligner to ensure robust temporal and semantic consistency between text and audio. To overcome high computational inference costs, ARCHI-TTS employs an efficient inference strategy that reuses encoder features across denoising steps, drastically accelerating synthesis without performance degradation. An auxiliary CTC loss applied to the condition encoder further enhances the semantic understanding. Experimental results demonstrate that ARCHI-TTS achieves a WER of 1.98% on LibriSpeech-PC test-clean, and 1.47%/1.42% on SeedTTS test-en/test-zh with a high inference efficiency, consistently outperforming recent state-of-the-art TTS systems.
Audio-visual video highlight detection aims to automatically identify the most salient moments in videos by leveraging both visual and auditory cues. However, existing models often underutilize the audio modality, focusing on high-level semantic features while failing to fully leverage the rich, dynamic characteristics of sound. To address this limitation, we propose a novel framework, Dual-Pathway Audio Encoders for Video Highlight Detection (DAViHD). The dual-pathway audio encoder is composed of a semantic pathway for content understanding and a dynamic pathway that captures spectro-temporal dynamics. The semantic pathway extracts high-level information by identifying the content within the audio, such as speech, music, or specific sound events. The dynamic pathway employs a frequency-adaptive mechanism as time evolves to jointly model these dynamics, enabling it to identify transient acoustic events via salient spectral bands and rapid energy changes. We integrate the novel audio encoder into a full audio-visual framework and achieve new state-of-the-art performance on the large-scale MrHiSum benchmark. Our results demonstrate that a sophisticated, dual-faceted audio representation is key to advancing the field of highlight detection.
Evaluating the quality of children's utterances in adult-child dialogue remains challenging due to insufficient context-sensitive metrics. Common proxies such as Mean Length of Utterance (MLU), lexical diversity (vocd-D), and readability indices (Flesch-Kincaid Grade Level, Gunning Fog Index) are dominated by length and ignore conversational context, missing aspects of response quality such as reasoning depth, topic maintenance, and discourse planning. We introduce an LLM-as-a-judge framework that first classifies the Previous Adult Utterance Type and then scores the child's response along two axes: Expansion (contextual elaboration and inferential depth) and Independence (the child's contribution to advancing the discourse). These axes reflect fundamental dimensions in child language development, where Expansion captures elaboration, clause combining, and causal and contrastive connectives. Independence captures initiative, topic control, decreasing reliance on adult scaffolding through growing self-regulation, and audience design. We establish developmental validity by showing age-related patterns and demonstrate predictive value by improving age estimation over common baselines. We further confirm semantic sensitivity by detecting differences tied to discourse relations. Our metrics align with human judgments, enabling large-scale evaluation. This shifts child utterance assessment from simply measuring length to evaluating how meaningfully the child's speech contributes to and advances the conversation within its context.
Current audio foundation models typically rely on rigid, task-specific supervision, addressing isolated factors of audio rather than the whole. In contrast, human intelligence processes audio holistically, seamlessly bridging physical signals with abstract cognitive concepts to execute complex tasks. Grounded in this philosophy, we introduce Bagpiper, an 8B audio foundation model that interprets physical audio via rich captions, i.e., comprehensive natural language descriptions that encapsulate the critical cognitive concepts inherent in the signal (e.g., transcription, audio events). By pre-training on a massive corpus of 600B tokens, the model establishes a robust bidirectional mapping between raw audio and this high-level conceptual space. During fine-tuning, Bagpiper adopts a caption-then-process workflow, simulating an intermediate cognitive reasoning step to solve diverse tasks without task-specific priors. Experimentally, Bagpiper outperforms Qwen-2.5-Omni on MMAU and AIRBench for audio understanding and surpasses CosyVoice3 and TangoFlux in generation quality, capable of synthesizing arbitrary compositions of speech, music, and sound effects. To the best of our knowledge, Bagpiper is among the first works that achieve unified understanding generation for general audio. Model, data, and code are available at Bagpiper Home Page.
Speech Emotion Recognition (SER) research has faced limitations due to the lack of standard and sufficiently large datasets. Recent studies have leveraged pre-trained models to extract features for downstream tasks such as SER. This work explores the capabilities of Whisper, a pre-trained ASR system, in speech emotion recognition by proposing two attention-based pooling methods, Multi-head Attentive Average Pooling and QKV Pooling, designed to efficiently reduce the dimensionality of Whisper representations while preserving emotional features. We experiment on English and Persian, using the IEMOCAP and ShEMO datasets respectively, with Whisper Tiny and Small. Our multi-head QKV architecture achieves state-of-the-art results on the ShEMO dataset, with a 2.47% improvement in unweighted accuracy. We further compare the performance of different Whisper encoder layers and find that intermediate layers often perform better for SER on the Persian dataset, providing a lightweight and efficient alternative to much larger models such as HuBERT X-Large. Our findings highlight the potential of Whisper as a representation extractor for SER and demonstrate the effectiveness of attention-based pooling for dimension reduction.
Detecting uncivil language is crucial for maintaining safe, inclusive, and democratic online spaces. Yet existing classifiers often misinterpret posts containing uncivil cues but expressing civil intents, leading to inflated estimates of harmful incivility online. We introduce LinGO, a linguistic graph optimization framework for large language models (LLMs) that leverages linguistic structures and optimization techniques to classify multi-class intents of incivility that use various direct and indirect expressions. LinGO decomposes language into multi-step linguistic components, identifies targeted steps that cause the most errors, and iteratively optimizes prompt and/or example components for targeted steps. We evaluate it using a dataset collected during the 2022 Brazilian presidential election, encompassing four forms of political incivility: Impoliteness (IMP), Hate Speech and Stereotyping (HSST), Physical Harm and Violent Political Rhetoric (PHAVPR), and Threats to Democratic Institutions and Values (THREAT). Each instance is annotated with six types of civil/uncivil intent. We benchmark LinGO using three cost-efficient LLMs: GPT-5-mini, Gemini 2.5 Flash-Lite, and Claude 3 Haiku, and four optimization techniques: TextGrad, AdalFlow, DSPy, and Retrieval-Augmented Generation (RAG). The results show that, across all models, LinGO consistently improves accuracy and weighted F1 compared with zero-shot, chain-of-thought, direct optimization, and fine-tuning baselines. RAG is the strongest optimization technique and, when paired with Gemini model, achieves the best overall performance. These findings demonstrate that incorporating multi-step linguistic components into LLM instructions and optimize targeted components can help the models explain complex semantic meanings, which can be extended to other complex semantic explanation tasks in the future.