Sparse autoencoders (SAEs) have become a standard tool for mechanistic interpretability in autoregressive large language models (LLMs), enabling researchers to extract sparse, human-interpretable features and intervene on model behavior. Recently, as diffusion language models (DLMs) have become an increasingly promising alternative to the autoregressive LLMs, it is essential to develop tailored mechanistic interpretability tools for this emerging class of models. In this work, we present DLM-Scope, the first SAE-based interpretability framework for DLMs, and demonstrate that trained Top-K SAEs can faithfully extract interpretable features. Notably, we find that inserting SAEs affects DLMs differently than autoregressive LLMs: while SAE insertion in LLMs typically incurs a loss penalty, in DLMs it can reduce cross-entropy loss when applied to early layers, a phenomenon absent or markedly weaker in LLMs. Additionally, SAE features in DLMs enable more effective diffusion-time interventions, often outperforming LLM steering. Moreover, we pioneer certain new SAE-based research directions for DLMs: we show that SAEs can provide useful signals for DLM decoding order; and the SAE features are stable during the post-training phase of DLMs. Our work establishes a foundation for mechanistic interpretability in DLMs and shows a great potential of applying SAEs to DLM-related tasks and algorithms.
Safety alignment mechanisms in Large Language Models (LLMs) often operate as latent internal states, obscuring the model's inherent capabilities. Building on this observation, we model the safety mechanism as an unobserved confounder from a causal perspective. Then, we propose the \textbf{C}ausal \textbf{F}ront-Door \textbf{A}djustment \textbf{A}ttack ({\textbf{CFA}}$^2$) to jailbreak LLM, which is a framework that leverages Pearl's Front-Door Criterion to sever the confounding associations for robust jailbreaking. Specifically, we employ Sparse Autoencoders (SAEs) to physically strip defense-related features, isolating the core task intent. We further reduce computationally expensive marginalization to a deterministic intervention with low inference complexity. Experiments demonstrate that {CFA}$^2$ achieves state-of-the-art attack success rates while offering a mechanistic interpretation of the jailbreaking process.
Large language models (LLMs) are increasingly trained in complex Reinforcement Learning, multi-agent environments, making it difficult to understand how behavior changes over training. Sparse Autoencoders (SAEs) have recently shown to be useful for data-centric interpretability. In this work, we analyze large-scale reinforcement learning training runs from the sophisticated environment of Full-Press Diplomacy by applying pretrained SAEs, alongside LLM-summarizer methods. We introduce Meta-Autointerp, a method for grouping SAE features into interpretable hypotheses about training dynamics. We discover fine-grained behaviors including role-playing patterns, degenerate outputs, language switching, alongside high-level strategic behaviors and environment-specific bugs. Through automated evaluation, we validate that 90% of discovered SAE Meta-Features are significant, and find a surprising reward hacking behavior. However, through two user studies, we find that even subjectively interesting and seemingly helpful SAE features may be worse than useless to humans, along with most LLM generated hypotheses. However, a subset of SAE-derived hypotheses are predictively useful for downstream tasks. We further provide validation by augmenting an untrained agent's system prompt, improving the score by +14.2%. Overall, we show that SAEs and LLM-summarizer provide complementary views into agent behavior, and together our framework forms a practical starting point for future data-centric interpretability work on ensuring trustworthy LLM behavior throughout training.
Sparse Autoencoders (SAEs) are powerful tools for interpreting neural representations, yet their use in audio remains underexplored. We train SAEs across all encoder layers of Whisper and HuBERT, provide an extensive evaluation of their stability, interpretability, and show their practical utility. Over 50% of the features remain consistent across random seeds, and reconstruction quality is preserved. SAE features capture general acoustic and semantic information as well as specific events, including environmental noises and paralinguistic sounds (e.g. laughter, whispering) and disentangle them effectively, requiring removal of only 19-27% of features to erase a concept. Feature steering reduces Whisper's false speech detections by 70% with negligible WER increase, demonstrating real-world applicability. Finally, we find SAE features correlated with human EEG activity during speech perception, indicating alignment with human neural processing. The code and checkpoints are available at https://github.com/audiosae/audiosae_demo.
With recent progress on fine-tuning language models around a fixed sparse autoencoder, we disentangle the decoder matrix into almost orthogonal features. This reduces interference and superposition between the features, while keeping performance on the target dataset essentially unchanged. Our orthogonality penalty leads to identifiable features, ensuring the uniqueness of the decomposition. Further, we find that the distance between embedded feature explanations increases with stricter orthogonality penalty, a desirable property for interpretability. Invoking the $\textit{Independent Causal Mechanisms}$ principle, we argue that orthogonality promotes modular representations amenable to causal intervention. We empirically show that these increasingly orthogonalized features allow for isolated interventions. Our code is available under $\texttt{https://github.com/mrtzmllr/sae-icm}$.
Inverse problems are fundamental to many scientific and engineering disciplines; they arise when one seeks to reconstruct hidden, underlying quantities from noisy measurements. Many applications demand not just point estimates but interpretable uncertainty. Providing fast inference alongside uncertainty estimates remains challenging yet desirable in numerous applications. We propose the Variational Sparse Paired Autoencoder (vsPAIR) to address this challenge. The architecture pairs a standard VAE encoding observations with a sparse VAE encoding quantities of interest, connected through a learned latent mapping. The variational structure enables uncertainty estimation, the paired architecture encourages interpretability by anchoring QoI representations to clean data, and sparse encodings provide structure by concentrating information into identifiable factors rather than diffusing across all dimensions. We also propose modifications to existing sparse VAE methods: a hard-concrete spike-and-slab relaxation for differentiable training and a beta hyperprior for adaptive sparsity levels. To validate the effectiveness of our proposed architecture, we conduct experiments on blind inpainting and computed tomography, demonstrating that vsPAIR is a capable inverse problem solver that can provide interpretable and structured uncertainty estimates.
Activation decomposition methods in language models are tightly coupled to geometric assumptions on how concepts are realized in activation space. Existing approaches search for individual global directions, implicitly assuming linear separability, which overlooks concepts with nonlinear or multi-dimensional structure. In this work, we leverage Mixture of Factor Analyzers (MFA) as a scalable, unsupervised alternative that models the activation space as a collection of Gaussian regions with their local covariance structure. MFA decomposes activations into two compositional geometric objects: the region's centroid in activation space, and the local variation from the centroid. We train large-scale MFAs for Llama-3.1-8B and Gemma-2-2B, and show they capture complex, nonlinear structures in activation space. Moreover, evaluations on localization and steering benchmarks show that MFA outperforms unsupervised baselines, is competitive with supervised localization methods, and often achieves stronger steering performance than sparse autoencoders. Together, our findings position local geometry, expressed through subspaces, as a promising unit of analysis for scalable concept discovery and model control, accounting for complex structures that isolated directions fail to capture.
Activation-based steering enables Large Language Models (LLMs) to exhibit targeted behaviors by intervening on intermediate activations without retraining. Despite its widespread use, the mechanistic factors that govern when steering succeeds or fails remain poorly understood, as prior work has relied primarily on black-box outputs or LLM-based judges. In this study, we investigate whether the reliability of steering can be diagnosed using internal model signals. We focus on two information-theoretic measures: the entropy-derived Normalized Branching Factor (NBF), and the Kullback-Leibler (KL) divergence between steered activations and targeted concepts in the vocabulary space. We hypothesize that effective steering corresponds to structured entropy preservation and coherent KL alignment across decoding steps. Building on a reliability study demonstrating high inter-judge agreement between two architecturally distinct LLMs, we use LLM-generated annotations as ground truth and show that these mechanistic signals provide meaningful predictive power for identifying successful steering and estimating failure probability. We further introduce a stronger evaluation baseline for Contrastive Activation Addition (CAA) and Sparse Autoencoder-based steering, the two most widely adopted activation-steering methods.
Sparse autoencoders (SAEs) have emerged as a promising method for interpreting neural network representations by decomposing activations into sparse combinations of dictionary atoms. However, SAEs assume that features combine additively through linear reconstruction, an assumption that cannot capture compositional structure: linear models cannot distinguish whether "Starbucks" arises from the composition of "star" and "coffee" features or merely their co-occurrence. This forces SAEs to allocate monolithic features for compound concepts rather than decomposing them into interpretable constituents. We introduce PolySAE, which extends the SAE decoder with higher-order terms to model feature interactions while preserving the linear encoder essential for interpretability. Through low-rank tensor factorization on a shared projection subspace, PolySAE captures pairwise and triple feature interactions with small parameter overhead (3% on GPT2). Across four language models and three SAE variants, PolySAE achieves an average improvement of approximately 8% in probing F1 while maintaining comparable reconstruction error, and produces 2-10$\times$ larger Wasserstein distances between class-conditional feature distributions. Critically, learned interaction weights exhibit negligible correlation with co-occurrence frequency ($r = 0.06$ vs. $r = 0.82$ for SAE feature covariance), suggesting that polynomial terms capture compositional structure, such as morphological binding and phrasal composition, largely independent of surface statistics.
Detecting rare and diverse anomalies in highly imbalanced datasets-such as Advanced Persistent Threats (APTs) in cybersecurity-remains a fundamental challenge for machine learning systems. Active learning offers a promising direction by strategically querying an oracle to minimize labeling effort, yet conventional approaches often fail to exploit the intrinsic geometric structure of the feature space for model refinement. In this paper, we introduce SDA2E, a Sparse Dual Adversarial Attention-based AutoEncoder designed to learn compact and discriminative latent representations from imbalanced, high-dimensional data. We further propose a similarity-guided active learning framework that integrates three novel strategies to refine decision boundaries efficiently: mormal-like expansion, which enriches the training set with points similar to labeled normals to improve reconstruction fidelity; anomaly-like prioritization, which boosts ranking accuracy by focusing on points resembling known anomalies; and a hybrid strategy that combines both for balanced model refinement and ranking. A key component of our framework is a new similarity measure, Normalized Matching 1s (SIM_NM1), tailored for sparse binary embeddings. We evaluate SDA2E extensively across 52 imbalanced datasets, including multiple DARPA Transparent Computing scenarios, and benchmark it against 15 state-of-the-art anomaly detection methods. Results demonstrate that SDA2E consistently achieves superior ranking performance (nDCG up to 1.0 in several cases) while reducing the required labeled data by up to 80% compared to passive training. Statistical tests confirm the significance of these improvements. Our work establishes a robust, efficient, and statistically validated framework for anomaly detection that is particularly suited to cybersecurity applications such as APT detection.