Michael Pokorny
Abstract:Large language models (LLMs) are increasingly trained in complex Reinforcement Learning, multi-agent environments, making it difficult to understand how behavior changes over training. Sparse Autoencoders (SAEs) have recently shown to be useful for data-centric interpretability. In this work, we analyze large-scale reinforcement learning training runs from the sophisticated environment of Full-Press Diplomacy by applying pretrained SAEs, alongside LLM-summarizer methods. We introduce Meta-Autointerp, a method for grouping SAE features into interpretable hypotheses about training dynamics. We discover fine-grained behaviors including role-playing patterns, degenerate outputs, language switching, alongside high-level strategic behaviors and environment-specific bugs. Through automated evaluation, we validate that 90% of discovered SAE Meta-Features are significant, and find a surprising reward hacking behavior. However, through two user studies, we find that even subjectively interesting and seemingly helpful SAE features may be worse than useless to humans, along with most LLM generated hypotheses. However, a subset of SAE-derived hypotheses are predictively useful for downstream tasks. We further provide validation by augmenting an untrained agent's system prompt, improving the score by +14.2%. Overall, we show that SAEs and LLM-summarizer provide complementary views into agent behavior, and together our framework forms a practical starting point for future data-centric interpretability work on ensuring trustworthy LLM behavior throughout training.
Abstract:Despite numerous attempts to solve the issue of hallucination since the inception of neural language models, it remains a problem in even frontier large language models today. Why is this the case? We walk through definitions of hallucination used in the literature from a historical perspective up to the current day, and fold them into a single definition of hallucination, wherein different prior definitions focus on different aspects of our definition. At its core, we argue that hallucination is simply inaccurate (internal) world modeling, in a form where it is observable to the user (e.g., stating a fact which contradicts a knowledge base, or producing a summary which contradicts a known source). By varying the reference world model as well as the knowledge conflict policy (e.g., knowledge base vs. in-context), we arrive at the different existing definitions of hallucination present in the literature. We argue that this unified view is useful because it forces evaluations to make clear their assumed "world" or source of truth, clarifies what should and should not be called hallucination (as opposed to planning or reward/incentive-related errors), and provides a common language to compare benchmarks and mitigation techniques. Building on this definition, we outline plans for a family of benchmarks in which hallucinations are defined as mismatches with synthetic but fully specified world models in different environments, and sketch out how these benchmarks can use such settings to stress-test and improve the world modeling components of language models.
Abstract:Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.