Segmentation of remote sensing imagery is the process of partitioning satellite or aerial images into meaningful regions or objects.
We present MMLSv2, a dataset for landslide segmentation on Martian surfaces. MMLSv2 consists of multimodal imagery with seven bands: RGB, digital elevation model, slope, thermal inertia, and grayscale channels. MMLSv2 comprises 664 images distributed across training, validation, and test splits. In addition, an isolated test set of 276 images from a geographically disjoint region from the base dataset is released to evaluate spatial generalization. Experiments conducted with multiple segmentation models show that the dataset supports stable training and achieves competitive performance, while still posing challenges in fragmented, elongated, and small-scale landslide regions. Evaluation on the isolated test set leads to a noticeable performance drop, indicating increased difficulty and highlighting its value for assessing model robustness and generalization beyond standard in-distribution settings. Dataset will be available at: https://github.com/MAIN-Lab/MMLS_v2
Semantic segmentation in high-resolution agricultural imagery demands models that strike a careful balance between accuracy and computational efficiency to enable deployment in practical systems. In this work, we propose DAS-SK, a novel lightweight architecture that retrofits selective kernel convolution (SK-Conv) into the dual atrous separable convolution (DAS-Conv) module to strengthen multi-scale feature learning. The model further enhances the atrous spatial pyramid pooling (ASPP) module, enabling the capture of fine-grained local structures alongside global contextual information. Built upon a modified DeepLabV3 framework with two complementary backbones - MobileNetV3-Large and EfficientNet-B3, the DAS-SK model mitigates limitations associated with large dataset requirements, limited spectral generalization, and the high computational cost that typically restricts deployment on UAVs and other edge devices. Comprehensive experiments across three benchmarks: LandCover.ai, VDD, and PhenoBench, demonstrate that DAS-SK consistently achieves state-of-the-art performance, while being more efficient than CNN-, transformer-, and hybrid-based competitors. Notably, DAS-SK requires up to 21x fewer parameters and 19x fewer GFLOPs than top-performing transformer models. These findings establish DAS-SK as a robust, efficient, and scalable solution for real-time agricultural robotics and high-resolution remote sensing, with strong potential for broader deployment in other vision domains.
Semantic segmentation of high-resolution remote-sensing imagery is critical for urban mapping and land-cover monitoring, yet training data typically exhibits severe long-tailed pixel imbalance. In the dataset LoveDA, this challenge is compounded by an explicit Urban/Rural split with distinct appearance and inconsistent class-frequency statistics across domains. We present a prompt-controlled diffusion augmentation framework that synthesizes paired label--image samples with explicit control of both domain and semantic composition. Stage~A uses a domain-aware, masked ratio-conditioned discrete diffusion model to generate layouts that satisfy user-specified class-ratio targets while respecting learned co-occurrence structure. Stage~B translates layouts into photorealistic, domain-consistent images using Stable Diffusion with ControlNet guidance. Mixing the resulting ratio and domain-controlled synthetic pairs with real data yields consistent improvements across multiple segmentation backbones, with gains concentrated on minority classes and improved Urban and Rural generalization, demonstrating controllable augmentation as a practical mechanism to mitigate long-tail bias in remote-sensing segmentation. Source codes, pretrained models, and synthetic datasets are available at \href{https://github.com/Buddhi19/SyntheticGen.git}{Github}
High-resolution remote sensing imagery is characterized by densely distributed land-cover objects and complex boundaries, which places higher demands on both geometric localization and semantic prediction. Existing training-free open-vocabulary semantic segmentation (OVSS) methods typically fuse CLIP and vision foundation models (VFMs) using "one-way injection" and "shallow post-processing" strategies, making it difficult to satisfy these requirements. To address this issue, we propose a spatial-regularization-aware dual-branch collaborative inference framework for training-free OVSS, termed SDCI. First, during feature encoding, SDCI introduces a cross-model attention fusion (CAF) module, which guides collaborative inference by injecting self-attention maps into each other. Second, we propose a bidirectional cross-graph diffusion refinement (BCDR) module that enhances the reliability of dual-branch segmentation scores through iterative random-walk diffusion. Finally, we incorporate low-level superpixel structures and develop a convex-optimization-based superpixel collaborative prediction (CSCP) mechanism to further refine object boundaries. Experiments on multiple remote sensing semantic segmentation benchmarks demonstrate that our method achieves better performance than existing approaches. Moreover, ablation studies further confirm that traditional object-based remote sensing image analysis methods leveraging superpixel structures remain effective within deep learning frameworks. Code: https://github.com/yu-ni1989/SDCI.
Safe UAV emergency landing requires more than just identifying flat terrain; it demands understanding complex semantic risks (e.g., crowds, temporary structures) invisible to traditional geometric sensors. In this paper, we propose a novel framework leveraging Remote Sensing (RS) imagery and Multimodal Large Language Models (MLLMs) for global context-aware landing site assessment. Unlike local geometric methods, our approach employs a coarse-to-fine pipeline: first, a lightweight semantic segmentation module efficiently pre-screens candidate areas; second, a vision-language reasoning agent fuses visual features with Point-of-Interest (POI) data to detect subtle hazards. To validate this approach, we construct and release the Emergency Landing Site Selection (ELSS) benchmark. Experiments demonstrate that our framework significantly outperforms geometric baselines in risk identification accuracy. Furthermore, qualitative results confirm its ability to generate human-like, interpretable justifications, enhancing trust in automated decision-making. The benchmark dataset is publicly accessible at https://anonymous.4open.science/r/ELSS-dataset-43D7.
Accurate extraction of rural roads from high-resolution remote sensing imagery is essential for infrastructure planning and sustainable development. However, this task presents unique challenges in rural settings due to several factors. These include high intra-class variability and low inter-class separability from diverse surface materials, frequent vegetation occlusions that disrupt spatial continuity, and narrow road widths that exacerbate detection difficulties. Existing methods, primarily optimized for structured urban environments, often underperform in these scenarios as they overlook such distinctive characteristics. To address these challenges, we propose DSFC-Net, a dual-encoder framework that synergistically fuses spatial and frequency-domain information. Specifically, a CNN branch is employed to capture fine-grained local road boundaries and short-range continuity, while a novel Spatial-Frequency Hybrid Transformer (SFT) is introduced to robustly model global topological dependencies against vegetation occlusions. Distinct from standard attention mechanisms that suffer from frequency bias, the SFT incorporates a Cross-Frequency Interaction Attention (CFIA) module that explicitly decouples high- and low-frequency information via a Laplacian Pyramid strategy. This design enables the dynamic interaction between spatial details and frequency-aware global contexts, effectively preserving the connectivity of narrow roads. Furthermore, a Channel Feature Fusion Module (CFFM) is proposed to bridge the two branches by adaptively recalibrating channel-wise feature responses, seamlessly integrating local textures with global semantics for accurate segmentation. Comprehensive experiments on the WHU-RuR+, DeepGlobe, and Massachusetts datasets validate the superiority of DSFC-Net over state-of-the-art approaches.
Visual transformers have driven major progress in remote sensing image analysis, particularly in object detection and segmentation. Recent vision-language and multimodal models further extend these capabilities by incorporating auxiliary information, including captions, question and answer pairs, and metadata, which broadens applications beyond conventional computer vision tasks. However, these models are typically optimized for semantic alignment between visual and textual content rather than geospatial understanding, and therefore are not suited for representing or reasoning with structured geospatial layers. In this study, we propose a novel model that enhances remote sensing imagery processing with guidance from auxiliary geospatial information. Our approach introduces a geospatial embedding mechanism that transforms diverse geospatial data into embedding patches that are spatially aligned with image patches. To facilitate cross-modal interaction, we design a guided attention module that dynamically integrates multimodal information by computing attention weights based on correlations with auxiliary data, thereby directing the model toward the most relevant regions. In addition, the module assigns distinct roles to individual attention heads, allowing the model to capture complementary aspects of the guidance information and improving the interpretability of its predictions. Experimental results demonstrate that the proposed framework outperforms existing pretrained geospatial foundation models in predicting disease prevalence, highlighting its effectiveness in multimodal geospatial understanding.
Vision-Language Pre-training (VLP) models like CLIP have significantly advanced Remote Sensing Image-Text Retrieval (RSITR). However, existing methods predominantly rely on coarse-grained global alignment, which often overlooks the dense, multi-scale semantics inherent in overhead imagery. Moreover, adapting these heavy models via full fine-tuning incurs prohibitive computational costs and risks catastrophic forgetting. To address these challenges, we propose MPS-CLIP, a parameter-efficient framework designed to shift the retrieval paradigm from global matching to keyword-guided fine-grained alignment. Specifically, we leverage a Large Language Model (LLM) to extract core semantic keywords, guiding the Segment Anything Model (SamGeo) to generate semantically relevant sub-perspectives. To efficiently adapt the frozen backbone, we introduce a Gated Global Attention (G^2A) adapter, which captures global context and long-range dependencies with minimal overhead. Furthermore, a Multi-Perspective Representation (MPR) module aggregates these local cues into robust multi-perspective embeddings. The framework is optimized via a hybrid objective combining multi-perspective contrastive and weighted triplet losses, which dynamically selects maximum-response perspectives to suppress noise and enforce precise semantic matching. Extensive experiments on the RSICD and RSITMD benchmarks demonstrate that MPS-CLIP achieves state-of-the-art performance with 35.18% and 48.40% mean Recall (mR), respectively, significantly outperforming full fine-tuning baselines and recent competitive methods. Code is available at https://github.com/Lcrucial1f/MPS-CLIP.
Self-supervised pretraining in remote sensing is mostly done using mid-spatial resolution (MR) image datasets due to their high availability. Given the release of high-resolution (HR) datasets, we ask how HR datasets can be included in self-supervised pretraining to enhance MR image representation learning and downstream segmentation performance on MR tasks. We design a spatial affinity component that can be added to existing self-supervised learning frameworks and that uses HR imagery to learn better representations of MR imagery. We test the spatial affinity component on two self-supervised learning frameworks and show that it outperforms models pretrained on HR or MR images alone.
Optical remote sensing imagery is indispensable for Earth observation, yet persistent cloud occlusion limits its downstream utility. Most cloud removal (CR) methods are optimized for low-level fidelity and can over-smooth textures and boundaries that are critical for analysis-ready data (ARD), leading to a mismatch between visually plausible restoration and semantic utility. To bridge this gap, we propose TDP-CR, a task-driven multimodal framework that jointly performs cloud removal and land-cover segmentation. Central to our approach is a Prompt-Guided Fusion (PGF) mechanism, which utilizes a learnable degradation prompt to encode cloud thickness and spatial uncertainty. By combining global channel context with local prompt-conditioned spatial bias, PGF adaptively integrates Synthetic Aperture Radar (SAR) information only where optical data is corrupted. We further introduce a parameter-efficient two-phase training strategy that decouples reconstruction and semantic representation learning. Experiments on the LuojiaSET-OSFCR dataset demonstrate the superiority of our framework: TDP-CR surpasses heavy state-of-the-art baselines by 0.18 dB in PSNR while using only 15\% of the parameters, and achieves a 1.4\% improvement in mIoU consistently against multi-task competitors, effectively delivering analysis-ready data.