Topic:Monocular Depth Estimation
What is Monocular Depth Estimation? Monocular-depth estimation is the process of estimating the depth of objects in a scene using a single image.
Papers and Code
Apr 30, 2025
Abstract:Wireless Capsule Endoscopy is a non-invasive imaging method for the entire gastrointestinal tract, and is a pain-free alternative to traditional endoscopy. It generates extensive video data that requires significant review time, and localizing the capsule after ingestion is a challenge. Techniques like bleeding detection and depth estimation can help with localization of pathologies, but deep learning models are typically too large to run directly on the capsule. Neural Cellular Automata (NCA) for bleeding segmentation and depth estimation are trained on capsule endoscopic images. For monocular depth estimation, we distill a large foundation model into the lean NCA architecture, by treating the outputs of the foundation model as pseudo ground truth. We then port the trained NCA to the ESP32 microcontroller, enabling efficient image processing on hardware as small as a camera capsule. NCA are more accurate (Dice) than other portable segmentation models, while requiring more than 100x fewer parameters stored in memory than other small-scale models. The visual results of NCA depth estimation look convincing, and in some cases beat the realism and detail of the pseudo ground truth. Runtime optimizations on the ESP32-S3 accelerate the average inference speed significantly, by more than factor 3. With several algorithmic adjustments and distillation, it is possible to eNCApsulate NCA models into microcontrollers that fit into wireless capsule endoscopes. This is the first work that enables reliable bleeding segmentation and depth estimation on a miniaturized device, paving the way for precise diagnosis combined with visual odometry as a means of precise localization of the capsule -- on the capsule.
Via

Apr 29, 2025
Abstract:Accurate and robust 3D scene reconstruction from casual, in-the-wild videos can significantly simplify robot deployment to new environments. However, reliable camera pose estimation and scene reconstruction from such unconstrained videos remains an open challenge. Existing visual-only SLAM methods perform well on benchmark datasets but struggle with real-world footage which often exhibits uncontrolled motion including rapid rotations and pure forward movements, textureless regions, and dynamic objects. We analyze the limitations of current methods and introduce a robust pipeline designed to improve 3D reconstruction from casual videos. We build upon recent deep visual odometry methods but increase robustness in several ways. Camera intrinsics are automatically recovered from the first few frames using structure-from-motion. Dynamic objects and less-constrained areas are masked with a predictive model. Additionally, we leverage monocular depth estimates to regularize bundle adjustment, mitigating errors in low-parallax situations. Finally, we integrate place recognition and loop closure to reduce long-term drift and refine both intrinsics and pose estimates through global bundle adjustment. We demonstrate large-scale contiguous 3D models from several online videos in various environments. In contrast, baseline methods typically produce locally inconsistent results at several points, producing separate segments or distorted maps. In lieu of ground-truth pose data, we evaluate map consistency, execution time and visual accuracy of re-rendered NeRF models. Our proposed system establishes a new baseline for visual reconstruction from casual uncontrolled videos found online, demonstrating more consistent reconstructions over longer sequences of in-the-wild videos than previously achieved.
* fix the overview figure
Via

Apr 28, 2025
Abstract:While Structure-from-Motion (SfM) has seen much progress over the years, state-of-the-art systems are prone to failure when facing extreme viewpoint changes in low-overlap, low-parallax or high-symmetry scenarios. Because capturing images that avoid these pitfalls is challenging, this severely limits the wider use of SfM, especially by non-expert users. We overcome these limitations by augmenting the classical SfM paradigm with monocular depth and normal priors inferred by deep neural networks. Thanks to a tight integration of monocular and multi-view constraints, our approach significantly outperforms existing ones under extreme viewpoint changes, while maintaining strong performance in standard conditions. We also show that monocular priors can help reject faulty associations due to symmetries, which is a long-standing problem for SfM. This makes our approach the first capable of reliably reconstructing challenging indoor environments from few images. Through principled uncertainty propagation, it is robust to errors in the priors, can handle priors inferred by different models with little tuning, and will thus easily benefit from future progress in monocular depth and normal estimation. Our code is publicly available at https://github.com/cvg/mpsfm.
* CVPR 2025
Via

Apr 27, 2025
Abstract:Gaze target detection (GTD) is the task of predicting where a person in an image is looking. This is a challenging task, as it requires the ability to understand the relationship between the person's head, body, and eyes, as well as the surrounding environment. In this paper, we propose a novel method for GTD that fuses multiple pieces of information extracted from an image. First, we project the 2D image into a 3D representation using monocular depth estimation. We then extract a depth-infused saliency module map, which highlights the most salient (\textit{attention-grabbing}) regions in image for the subject in consideration. We also extract face and depth modalities from the image, and finally fuse all the extracted modalities to identify the gaze target. We quantitatively evaluated our method, including the ablation analysis on three publicly available datasets, namely VideoAttentionTarget, GazeFollow and GOO-Real, and showed that it outperforms other state-of-the-art methods. This suggests that our method is a promising new approach for GTD.
* accepted at NeurIPS 2023 Gaze Meets ML Workshop
Via

Apr 26, 2025
Abstract:The perception of vehicles and pedestrians in urban scenarios is crucial for autonomous driving. This process typically involves complicated data collection, imposes high computational and hardware demands. To address these limitations, we first develop a highly efficient method for generating virtual datasets, which enables the creation of task- and scenario-specific datasets in a short time. Leveraging this method, we construct the virtual depth estimation dataset VirDepth, a large-scale, multi-task autonomous driving dataset. Subsequently, we propose CenterDepth, a lightweight architecture for monocular depth estimation that ensures high operational efficiency and exhibits superior performance in depth estimation tasks with highly imbalanced height-scale distributions. CenterDepth integrates global semantic information through the innovative Center FC-CRFs algorithm, aggregates multi-scale features based on object key points, and enables detection-based depth estimation of targets. Experiments demonstrate that our proposed method achieves superior performance in terms of both computational speed and prediction accuracy.
* Depth Esitimation, Key-points, Virtual Datasets, Autonomous Driving
Via

Apr 25, 2025
Abstract:The field of monocular depth estimation is continually evolving with the advent of numerous innovative models and extensions. However, research on monocular depth estimation methods specifically for underwater scenes remains limited, compounded by a scarcity of relevant data and methodological support. This paper proposes a novel approach to address the existing challenges in current monocular depth estimation methods for underwater environments. We construct an economically efficient dataset suitable for underwater scenarios by employing multi-view depth estimation to generate supervisory signals and corresponding enhanced underwater images. we introduces a texture-depth fusion module, designed according to the underwater optical imaging principles, which aims to effectively exploit and integrate depth information from texture cues. Experimental results on the FLSea dataset demonstrate that our approach significantly improves the accuracy and adaptability of models in underwater settings. This work offers a cost-effective solution for monocular underwater depth estimation and holds considerable promise for practical applications.
Via

Apr 24, 2025
Abstract:This paper presents the results of the fourth edition of the Monocular Depth Estimation Challenge (MDEC), which focuses on zero-shot generalization to the SYNS-Patches benchmark, a dataset featuring challenging environments in both natural and indoor settings. In this edition, we revised the evaluation protocol to use least-squares alignment with two degrees of freedom to support disparity and affine-invariant predictions. We also revised the baselines and included popular off-the-shelf methods: Depth Anything v2 and Marigold. The challenge received a total of 24 submissions that outperformed the baselines on the test set; 10 of these included a report describing their approach, with most leading methods relying on affine-invariant predictions. The challenge winners improved the 3D F-Score over the previous edition's best result, raising it from 22.58% to 23.05%.
* To appear in CVPRW2025
Via

Apr 28, 2025
Abstract:Neural Radiance Fields (NeRF) has demonstrated its superior capability to represent 3D geometry but require accurately precomputed camera poses during training. To mitigate this requirement, existing methods jointly optimize camera poses and NeRF often relying on good pose initialisation or depth priors. However, these approaches struggle in challenging scenarios, such as large rotations, as they map each camera to a world coordinate system. We propose a novel method that eliminates prior dependencies by modeling continuous camera motions as time-dependent angular velocity and velocity. Relative motions between cameras are learned first via velocity integration, while camera poses can be obtained by aggregating such relative motions up to a world coordinate system defined at a single time step within the video. Specifically, accurate continuous camera movements are learned through a time-dependent NeRF, which captures local scene geometry and motion by training from neighboring frames for each time step. The learned motions enable fine-tuning the NeRF to represent the full scene geometry. Experiments on Co3D and Scannet show our approach achieves superior camera pose and depth estimation and comparable novel-view synthesis performance compared to state-of-the-art methods. Our code is available at https://github.com/HoangChuongNguyen/cope-nerf.
Via

Apr 24, 2025
Abstract:We propose a self-supervised monocular depth estimation network tailored for endoscopic scenes, aiming to infer depth within the gastrointestinal tract from monocular images. Existing methods, though accurate, typically assume consistent illumination, which is often violated due to dynamic lighting and occlusions caused by GI motility. These variations lead to incorrect geometric interpretations and unreliable self-supervised signals, degrading depth reconstruction quality. To address this, we introduce an occlusion-aware self-supervised framework. First, we incorporate an occlusion mask for data augmentation, generating pseudo-labels by simulating viewpoint-dependent occlusion scenarios. This enhances the model's ability to learn robust depth features under partial visibility. Second, we leverage semantic segmentation guided by non-negative matrix factorization, clustering convolutional activations to generate pseudo-labels in texture-deprived regions, thereby improving segmentation accuracy and mitigating information loss from lighting changes. Experimental results on the SCARED dataset show that our method achieves state-of-the-art performance in self-supervised depth estimation. Additionally, evaluations on the Endo-SLAM and SERV-CT datasets demonstrate strong generalization across diverse endoscopic environments.
Via

Apr 22, 2025
Abstract:Monocular depth estimation (MDE) aims to predict per-pixel depth values from a single RGB image. Recent advancements have positioned diffusion models as effective MDE tools by framing the challenge as a conditional image generation task. Despite their progress, these methods often struggle with accurately reconstructing distant depths, due largely to the imbalanced distribution of depth values and an over-reliance on spatial-domain features. To overcome these limitations, we introduce VistaDepth, a novel framework that integrates adaptive frequency-domain feature enhancements with an adaptive weight-balancing mechanism into the diffusion process. Central to our approach is the Latent Frequency Modulation (LFM) module, which dynamically refines spectral responses in the latent feature space, thereby improving the preservation of structural details and reducing noisy artifacts. Furthermore, we implement an adaptive weighting strategy that modulates the diffusion loss in real-time, enhancing the model's sensitivity towards distant depth reconstruction. These innovations collectively result in superior depth perception performance across both distance and detail. Experimental evaluations confirm that VistaDepth achieves state-of-the-art performance among diffusion-based MDE techniques, particularly excelling in the accurate reconstruction of distant regions.
* 8 pages, 6 figures, 4 tables
Via
