Monocular-depth estimation is the process of estimating the depth of objects in a scene using a single image.
Given a monocular video, the goal of video re-rendering is to generate views of the scene from a novel camera trajectory. Existing methods face two distinct challenges. Geometrically unconditioned models lack spatial awareness, leading to drift and deformation under viewpoint changes. On the other hand, geometrically-conditioned models depend on estimated depth and explicit reconstruction, making them susceptible to depth inaccuracies and calibration errors. We propose to address these challenges by using the implicit geometric knowledge embedded in the latent space of a large 4D reconstruction model to condition the video generation process. These latents capture scene structure in a continuous space without explicit reconstruction. Therefore, they provide a flexible representation that allows the pretrained diffusion prior to regularize errors more effectively. By jointly conditioning on these latents and source camera poses, we demonstrate that our model achieves state-of-the-art results on the video re-rendering task. Project webpage is https://lavr-4d-scene-rerender.github.io/
Latent diffusion models such as Stable Diffusion 1.5 offer strong generative priors that are highly valuable for image restoration, yet their full pipelines remain too computationally heavy for deployment on edge devices. Existing lightweight variants predominantly compress the denoising U-Net or reduce the diffusion trajectory, which disrupts the underlying latent manifold and limits generalization beyond a single task. We introduce NanoSD, a family of Pareto-optimal diffusion foundation models distilled from Stable Diffusion 1.5 through network surgery, feature-wise generative distillation, and structured architectural scaling jointly applied to the U-Net and the VAE encoder-decoder. This full-pipeline co-design preserves the generative prior while producing models that occupy distinct operating points along the accuracy-latency-size frontier (e.g., 130M-315M parameters, achieving real-time inference down to 20ms on mobile-class NPUs). We show that parameter reduction alone does not correlate with hardware efficiency, and we provide an analysis revealing how architectural balance, feature routing, and latent-space preservation jointly shape true on-device latency. When used as a drop-in backbone, NanoSD enables state-of-the-art performance across image super-resolution, image deblurring, face restoration, and monocular depth estimation, outperforming prior lightweight diffusion models in both perceptual quality and practical deployability. NanoSD establishes a general-purpose diffusion foundation model family suitable for real-time visual generation and restoration on edge devices.
Monocular depth estimation has applications in many fields, such as autonomous navigation and extended reality, making it an essential computer vision task. However, current methods often produce smooth depth maps that lack the fine geometric detail needed for accurate scene understanding. We propose MDENeRF, an iterative framework that refines monocular depth estimates using depth information from Neural Radiance Fields (NeRFs). MDENeRF consists of three components: (1) an initial monocular estimate for global structure, (2) a NeRF trained on perturbed viewpoints, with per-pixel uncertainty, and (3) Bayesian fusion of the noisy monocular and NeRF depths. We derive NeRF uncertainty from the volume rendering process to iteratively inject high-frequency fine details. Meanwhile, our monocular prior maintains global structure. We demonstrate superior performance on key metrics and experiments using indoor scenes from the SUN RGB-D dataset.
Relative-depth foundation models transfer well, yet monocular metric depth remains ill-posed due to unidentifiable global scale and heightened domain-shift sensitivity. Under a frozen-backbone calibration setting, we recover metric depth via an image-specific affine transform in inverse depth and train only lightweight calibration heads while keeping the relative-depth backbone and the CLIP text encoder fixed. Since captions provide coarse but noisy scale cues that vary with phrasing and missing objects, we use language to predict an uncertainty-aware envelope that bounds feasible calibration parameters in an unconstrained space, rather than committing to a text-only point estimate. We then use pooled multi-scale frozen visual features to select an image-specific calibration within this envelope. During training, a closed-form least-squares oracle in inverse depth provides per-image supervision for learning the envelope and the selected calibration. Experiments on NYUv2 and KITTI improve in-domain accuracy, while zero-shot transfer to SUN-RGBD and DDAD demonstrates improved robustness over strong language-only baselines.
Applying single image Monocular Depth Estimation (MDE) models to video sequences introduces significant temporal instability and flickering artifacts. We propose a novel approach that adapts any state-of-the-art image-based (depth) estimation model for video processing by integrating a new temporal module - trainable on a single GPU in a few days. Our architecture StableDPT builds upon an off-the-shelf Vision Transformer (ViT) encoder and enhances the Dense Prediction Transformer (DPT) head. The core of our contribution lies in the temporal layers within the head, which use an efficient cross-attention mechanism to integrate information from keyframes sampled across the entire video sequence. This allows the model to capture global context and inter-frame relationships leading to more accurate and temporally stable depth predictions. Furthermore, we propose a novel inference strategy for processing videos of arbitrary length avoiding the scale misalignment and redundant computations associated with overlapping windows used in other methods. Evaluations on multiple benchmark datasets demonstrate improved temporal consistency, competitive state-of-the-art performance and on top 2x faster processing in real-world scenarios.
Monocular depth estimation aims to recover the depth information of 3D scenes from 2D images. Recent work has made significant progress, but its reliance on large-scale datasets and complex decoders has limited its efficiency and generalization ability. In this paper, we propose a lightweight and data-centric framework for zero-shot monocular depth estimation. We first adopt DINOv3 as the visual encoder to obtain high-quality dense features. Secondly, to address the inherent drawbacks of the complex structure of the DPT, we design the Simple Depth Transformer (SDT), a compact transformer-based decoder. Compared to the DPT, it uses a single-path feature fusion and upsampling process to reduce the computational overhead of cross-scale feature fusion, achieving higher accuracy while reducing the number of parameters by approximately 85%-89%. Furthermore, we propose a quality-based filtering strategy to filter out harmful samples, thereby reducing dataset size while improving overall training quality. Extensive experiments on five benchmarks demonstrate that our framework surpasses the DPT in accuracy. This work highlights the importance of balancing model design and data quality for achieving efficient and generalizable zero-shot depth estimation. Code: https://github.com/AIGeeksGroup/AnyDepth. Website: https://aigeeksgroup.github.io/AnyDepth.
Autonomous navigation is crucial for both medical and industrial endoscopic robots, enabling safe and efficient exploration of narrow tubular environments without continuous human intervention, where avoiding contact with the inner walls has been a longstanding challenge for prior approaches. We present a follow-the-leader endoscopic robot based on a flexible continuum structure designed to minimize contact between the endoscope body and intestinal walls, thereby reducing patient discomfort. To achieve this objective, we propose a vision-based deep reinforcement learning framework guided by monocular depth estimation. A realistic intestinal simulation environment was constructed in \textit{NVIDIA Omniverse} to train and evaluate autonomous navigation strategies. Furthermore, thousands of synthetic intraluminal images were generated using NVIDIA Replicator to fine-tune the Depth Anything model, enabling dense three-dimensional perception of the intestinal environment with a single monocular camera. Subsequently, we introduce a geometry-aware reward and penalty mechanism to enable accurate lumen tracking. Compared with the original Depth Anything model, our method improves $δ_{1}$ depth accuracy by 39.2% and reduces the navigation J-index by 0.67 relative to the second-best method, demonstrating the robustness and effectiveness of the proposed approach.
Soft boundaries, like thin hairs, are commonly observed in natural and computer-generated imagery, but they remain challenging for 3D vision due to the ambiguous mixing of foreground and background cues. This paper introduces Guardians of the Hair (HairGuard), a framework designed to recover fine-grained soft boundary details in 3D vision tasks. Specifically, we first propose a novel data curation pipeline that leverages image matting datasets for training and design a depth fixer network to automatically identify soft boundary regions. With a gated residual module, the depth fixer refines depth precisely around soft boundaries while maintaining global depth quality, allowing plug-and-play integration with state-of-the-art depth models. For view synthesis, we perform depth-based forward warping to retain high-fidelity textures, followed by a generative scene painter that fills disoccluded regions and eliminates redundant background artifacts within soft boundaries. Finally, a color fuser adaptively combines warped and inpainted results to produce novel views with consistent geometry and fine-grained details. Extensive experiments demonstrate that HairGuard achieves state-of-the-art performance across monocular depth estimation, stereo image/video conversion, and novel view synthesis, with significant improvements in soft boundary regions.
Accurate surround-view depth estimation provides a competitive alternative to laser-based sensors and is essential for 3D scene understanding in autonomous driving. While prior studies have proposed various approaches that primarily focus on enforcing cross-view constraints at the photometric level, few explicitly exploit the rich geometric structure inherent in both monocular and surround-view setting. In this work, we propose GeoSurDepth, a framework that leverages geometry consistency as the primary cue for surround-view depth estimation. Concretely, we utilize foundation models as a pseudo geometry prior and feature representation enhancement tool to guide the network to maintain surface normal consistency in spatial 3D space and regularize object- and texture-consistent depth estimation in 2D. In addition, we introduce a novel view synthesis pipeline where 2D-3D lifting is achieved with dense depth reconstructed via spatial warping, encouraging additional photometric supervision across temporal, spatial, and spatial-temporal contexts, and compensating for the limitations of single-view image reconstruction. Finally, a newly-proposed adaptive joint motion learning strategy enables the network to adaptively emphasize informative spatial geometry cues for improved motion reasoning. Extensive experiments on DDAD and nuScenes demonstrate that GeoSurDepth achieves state-of-the-art performance, validating the effectiveness of our approach. Our framework highlights the importance of exploiting geometry coherence and consistency for robust self-supervised multi-view depth estimation.
Monocular 3D object detection offers a low-cost alternative to LiDAR, yet remains less accurate due to the difficulty of estimating metric depth from a single image. We systematically evaluate how depth backbones and feature engineering affect a monocular Pseudo-LiDAR pipeline on the KITTI validation split. Specifically, we compare NeWCRFs (supervised metric depth) against Depth Anything V2 Metric-Outdoor (Base) under an identical pseudo-LiDAR generation and PointRCNN detection protocol. NeWCRFs yields stronger downstream 3D detection, achieving 10.50\% AP$_{3D}$ at IoU$=0.7$ on the Moderate split using grayscale intensity (Exp~2). We further test point-cloud augmentations using appearance cues (grayscale intensity) and semantic cues (instance segmentation confidence). Contrary to the expectation that semantics would substantially close the gap, these features provide only marginal gains, and mask-based sampling can degrade performance by removing contextual geometry. Finally, we report a depth-accuracy-versus-distance diagnostic using ground-truth 2D boxes (including Ped/Cyc), highlighting that coarse depth correctness does not fully predict strict 3D IoU. Overall, under an off-the-shelf LiDAR detector, depth-backbone choice and geometric fidelity dominate performance, outweighing secondary feature injection.