Abstract:Underwater Monocular Depth Estimation (UMDE) is a critical task that aims to estimate high-precision depth maps from underwater degraded images caused by light absorption and scattering effects in marine environments. Recently, Mamba-based methods have achieved promising performance across various vision tasks; however, they struggle with the UMDE task because their inflexible state scanning strategies fail to model the structural features of underwater images effectively. Meanwhile, existing UMDE datasets usually contain unreliable depth labels, leading to incorrect object-depth relationships between underwater images and their corresponding depth maps. To overcome these limitations, we develop a novel tree-aware Mamba method, dubbed Tree-Mamba, for estimating accurate monocular depth maps from underwater degraded images. Specifically, we propose a tree-aware scanning strategy that adaptively constructs a minimum spanning tree based on feature similarity. The spatial topological features among the tree nodes are then flexibly aggregated through bottom-up and top-down traversals, enabling stronger multi-scale feature representation capabilities. Moreover, we construct an underwater depth estimation benchmark (called BlueDepth), which consists of 38,162 underwater image pairs with reliable depth labels. This benchmark serves as a foundational dataset for training existing deep learning-based UMDE methods to learn accurate object-depth relationships. Extensive experiments demonstrate the superiority of the proposed Tree-Mamba over several leading methods in both qualitative results and quantitative evaluations with competitive computational efficiency. Code and dataset will be available at https://wyjgr.github.io/Tree-Mamba.html.
Abstract:In deep learning, the load data with non-temporal factors are difficult to process by sequence models. This problem results in insufficient precision of the prediction. Therefore, a short-term load forecasting method based on convolutional neural network (CNN), self-attention encoder-decoder network (SAEDN) and residual-refinement (Res) is proposed. In this method, feature extraction module is composed of a two-dimensional convolutional neural network, which is used to mine the local correlation between data and obtain high-dimensional data features. The initial load fore-casting module consists of a self-attention encoder-decoder network and a feedforward neural network (FFN). The module utilizes self-attention mechanisms to encode high-dimensional features. This operation can obtain the global correlation between data. Therefore, the model is able to retain important information based on the coupling relationship between the data in data mixed with non-time series factors. Then, self-attention decoding is per-formed and the feedforward neural network is used to regression initial load. This paper introduces the residual mechanism to build the load optimization module. The module generates residual load values to optimize the initial load. The simulation results show that the proposed load forecasting method has advantages in terms of prediction accuracy and prediction stability.
Abstract:Achieving the economical and stable operation of Multi-microgrids (MMG) systems is vital. However, there are still some challenging problems to be solved. Firstly, from the perspective of stable operation, it is necessary to minimize the energy fluctuation of the main grid. Secondly, the characteristics of energy conversion equipment need to be considered. Finally, privacy protection while reducing the operating cost of an MMG system is crucial. To address these challenges, a Data-driven strategy for MMG systems with Shared Energy Storage (SES) is proposed. The Mixed-Attention is applied to fit the conditions of the equipment, additionally, Multi-Agent Soft Actor-Critic(MA-SAC) and (Multi-Agent Win or Learn Fast Policy Hill-Climbing)MA-WoLF-PHC are proposed to solve the partially observable dynamic stochastic game problem. By testing the operation data of the MMG system in Northwest China, following conclusions are drawn: the R-Square (R2) values of results reach 0.999, indicating the neural network effectively models the nonlinear conditions. The proposed MMG system framework can reduce energy fluctuations in the main grid by 1746.5kW in 24 hours and achieve a cost reduction of 16.21% in the test. Finally, the superiority of the proposed algorithms is verified through their fast convergence speed and excellent optimization performance.