Abstract:Recent advances in 3D Gaussian Splatting (3DGS) have enabled real-time novel view synthesis (NVS) with impressive quality in indoor scenes. However, achieving high-fidelity rendering requires meticulously captured images covering the entire scene, limiting accessibility for general users. We aim to develop a practical 3DGS-based NVS framework using simple panorama-style motion with a handheld camera (e.g., mobile device). While convenient, this rotation-dominant motion and narrow baseline make accurate camera pose and 3D point estimation challenging, especially in textureless indoor scenes. To address these challenges, we propose LighthouseGS, a novel framework inspired by the lighthouse-like sweeping motion of panoramic views. LighthouseGS leverages rough geometric priors, such as mobile device camera poses and monocular depth estimation, and utilizes the planar structures often found in indoor environments. We present a new initialization method called plane scaffold assembly to generate consistent 3D points on these structures, followed by a stable pruning strategy to enhance geometry and optimization stability. Additionally, we introduce geometric and photometric corrections to resolve inconsistencies from motion drift and auto-exposure in mobile devices. Tested on collected real and synthetic indoor scenes, LighthouseGS delivers photorealistic rendering, surpassing state-of-the-art methods and demonstrating the potential for panoramic view synthesis and object placement.
Abstract:Indoor scenes we are living in are visually homogenous or textureless, while they inherently have structural forms and provide enough structural priors for 3D scene reconstruction. Motivated by this fact, we propose a structure-aware online signed distance fields (SDF) reconstruction framework in indoor scenes, especially under the Atlanta world (AW) assumption. Thus, we dub this incremental SDF reconstruction for AW as AiSDF. Within the online framework, we infer the underlying Atlanta structure of a given scene and then estimate planar surfel regions supporting the Atlanta structure. This Atlanta-aware surfel representation provides an explicit planar map for a given scene. In addition, based on these Atlanta planar surfel regions, we adaptively sample and constrain the structural regularity in the SDF reconstruction, which enables us to improve the reconstruction quality by maintaining a high-level structure while enhancing the details of a given scene. We evaluate the proposed AiSDF on the ScanNet and ReplicaCAD datasets, where we demonstrate that the proposed framework is capable of reconstructing fine details of objects implicitly, as well as structures explicitly in room-scale scenes.
Abstract:Among various interactions between humans, such as eye contact and gestures, physical interactions by contact can act as an essential moment in understanding human behaviors. Inspired by this fact, given a 3D partner human with the desired interaction label, we introduce a new task of 3D human generation in terms of physical contact. Unlike previous works of interacting with static objects or scenes, a given partner human can have diverse poses and different contact regions according to the type of interaction. To handle this challenge, we propose a novel method of generating interactive 3D humans for a given partner human based on a guided diffusion framework. Specifically, we newly present a contact prediction module that adaptively estimates potential contact regions between two input humans according to the interaction label. Using the estimated potential contact regions as complementary guidances, we dynamically enforce ContactGen to generate interactive 3D humans for a given partner human within a guided diffusion model. We demonstrate ContactGen on the CHI3D dataset, where our method generates physically plausible and diverse poses compared to comparison methods.