We introduce Infinigen, a procedural generator of photorealistic 3D scenes of the natural world. Infinigen is entirely procedural: every asset, from shape to texture, is generated from scratch via randomized mathematical rules, using no external source and allowing infinite variation and composition. Infinigen offers broad coverage of objects and scenes in the natural world including plants, animals, terrains, and natural phenomena such as fire, cloud, rain, and snow. Infinigen can be used to generate unlimited, diverse training data for a wide range of computer vision tasks including object detection, semantic segmentation, optical flow, and 3D reconstruction. We expect Infinigen to be a useful resource for computer vision research and beyond. Please visit https://infinigen.org for videos, code and pre-generated data.
Although graph neural networks (GNNs) have achieved impressive achievements in graph classification, they often need abundant task-specific labels, which could be extensively costly to acquire. A credible solution is to explore additional labeled graphs to enhance unsupervised learning on the target domain. However, how to apply GNNs to domain adaptation remains unsolved owing to the insufficient exploration of graph topology and the significant domain discrepancy. In this paper, we propose Coupled Contrastive Graph Representation Learning (CoCo), which extracts the topological information from coupled learning branches and reduces the domain discrepancy with coupled contrastive learning. CoCo contains a graph convolutional network branch and a hierarchical graph kernel network branch, which explore graph topology in implicit and explicit manners. Besides, we incorporate coupled branches into a holistic multi-view contrastive learning framework, which not only incorporates graph representations learned from complementary views for enhanced understanding, but also encourages the similarity between cross-domain example pairs with the same semantics for domain alignment. Extensive experiments on popular datasets show that our CoCo outperforms these competing baselines in different settings generally.
Zero-Shot Learning has been a highlighted research topic in both vision and language areas. Recently, most existing methods adopt structured knowledge information to model explicit correlations among categories and use deep graph convolutional network to propagate information between different categories. However, it is difficult to add new categories to existing structured knowledge graph, and deep graph convolutional network suffers from over-smoothing problem. In this paper, we provide a new semantic enhanced knowledge graph that contains both expert knowledge and categories semantic correlation. Our semantic enhanced knowledge graph can further enhance the correlations among categories and make it easy to absorb new categories. To propagate information on the knowledge graph, we propose a novel Residual Graph Convolutional Network (ResGCN), which can effectively alleviate the problem of over-smoothing. Experiments conducted on the widely used large-scale ImageNet-21K dataset and AWA2 dataset show the effectiveness of our method, and establish a new state-of-the-art on zero-shot learning. Moreover, our results on the large-scale ImageNet-21K with various feature extraction networks show that our method has better generalization and robustness.
Thanks for the cross-modal retrieval techniques, visible-infrared (RGB-IR) person re-identification (Re-ID) is achieved by projecting them into a common space, allowing person Re-ID in 24-hour surveillance systems. However, with respect to the probe-to-gallery, almost all existing RGB-IR based cross-modal person Re-ID methods focus on image-to-image matching, while the video-to-video matching which contains much richer spatial- and temporal-information remains under-explored. In this paper, we primarily study the video-based cross-modal person Re-ID method. To achieve this task, a video-based RGB-IR dataset is constructed, in which 927 valid identities with 463,259 frames and 21,863 tracklets captured by 12 RGB/IR cameras are collected. Based on our constructed dataset, we prove that with the increase of frames in a tracklet, the performance does meet more enhancement, demonstrating the significance of video-to-video matching in RGB-IR person Re-ID. Additionally, a novel method is further proposed, which not only projects two modalities to a modal-invariant subspace, but also extracts the temporal-memory for motion-invariant. Thanks to these two strategies, much better results are achieved on our video-based cross-modal person Re-ID. The code and dataset are released at: https://github.com/VCMproject233/MITML.
Synthesizing free-view photo-realistic images is an important task in multimedia. With the development of advanced driver assistance systems~(ADAS) and their applications in autonomous vehicles, experimenting with different scenarios becomes a challenge. Although the photo-realistic street scenes can be synthesized by image-to-image translation methods, which cannot produce coherent scenes due to the lack of 3D information. In this paper, a large-scale neural rendering method is proposed to synthesize the autonomous driving scene~(READ), which makes it possible to synthesize large-scale driving scenarios on a PC through a variety of sampling schemes. In order to represent driving scenarios, we propose an {\omega} rendering network to learn neural descriptors from sparse point clouds. Our model can not only synthesize realistic driving scenes but also stitch and edit driving scenes. Experiments show that our model performs well in large-scale driving scenarios.
We address multiview stereo (MVS), an important 3D vision task that reconstructs a 3D model such as a dense point cloud from multiple calibrated images. We propose CER-MVS (Cascaded Epipolar RAFT Multiview Stereo), a new approach based on the RAFT (Recurrent All-Pairs Field Transforms) architecture developed for optical flow. CER-MVS introduces five new changes to RAFT: epipolar cost volumes, cost volume cascading, multiview fusion of cost volumes, dynamic supervision, and multiresolution fusion of depth maps. CER-MVS is significantly different from prior work in multiview stereo. Unlike prior work, which operates by updating a 3D cost volume, CER-MVS operates by updating a disparity field. Furthermore, we propose an adaptive thresholding method to balance the completeness and accuracy of the reconstructed point clouds. Experiments show that our approach achieves competitive performance on DTU (the second best among known results) and state-of-the-art performance on the Tanks-and-Temples benchmark (both the intermediate and advanced set). Code is available at https://github.com/princeton-vl/CER-MVS
Recent progress in generative language models has enabled machines to generate astonishingly realistic texts. While there are many legitimate applications of such models, there is also a rising need to distinguish machine-generated texts from human-written ones (e.g., fake news detection). However, to our best knowledge, there is currently no benchmark environment with datasets and tasks to systematically study the so-called "Turing Test" problem for neural text generation methods. In this work, we present the TuringBench benchmark environment, which is comprised of (1) a dataset with 200K human- or machine-generated samples across 20 labels {Human, GPT-1, GPT-2_small, GPT-2_medium, GPT-2_large, GPT-2_xl, GPT-2_PyTorch, GPT-3, GROVER_base, GROVER_large, GROVER_mega, CTRL, XLM, XLNET_base, XLNET_large, FAIR_wmt19, FAIR_wmt20, TRANSFORMER_XL, PPLM_distil, PPLM_gpt2}, (2) two benchmark tasks -- i.e., Turing Test (TT) and Authorship Attribution (AA), and (3) a website with leaderboards. Our preliminary experimental results using TuringBench show that FAIR_wmt20 and GPT-3 are the current winners, among all language models tested, in generating the most human-like indistinguishable texts with the lowest F1 score by five state-of-the-art TT detection models. The TuringBench is available at: https://turingbench.ist.psu.edu/
Nowadays, E-commerce is increasingly integrated into our daily lives. Meanwhile, shopping process has also changed incrementally from one behavior (purchase) to multiple behaviors (such as view, carting and purchase). Therefore, utilizing interaction data of auxiliary behavior data draws a lot of attention in the E-commerce recommender systems. However, all existing models ignore two kinds of intrinsic heterogeneity which are helpful to capture the difference of user preferences and the difference of item attributes. First (intra-heterogeneity), each user has multiple social identities with otherness, and these different identities can result in quite different interaction preferences. Second (inter-heterogeneity), each item can transfer an item-specific percentage of score from low-level behavior to high-level behavior for the gradual relationship among multiple behaviors. Thus, the lack of consideration of these heterogeneities damages recommendation rank performance. To model the above heterogeneities, we propose a novel method named intra- and inter-heterogeneity recommendation model (ARGO). Specifically, we embed each user into multiple vectors representing the user's identities, and the maximum of identity scores indicates the interaction preference. Besides, we regard the item-specific transition percentage as trainable transition probability between different behaviors. Extensive experiments on two real-world datasets show that ARGO performs much better than the state-of-the-art in multi-behavior scenarios.
Accurate automatic liver and tumor segmentation plays a vital role in treatment planning and disease monitoring. Recently, deep convolutional neural network (DCNNs) has obtained tremendous success in 2D and 3D medical image segmentation. However, 2D DCNNs cannot fully leverage the inter-slice information, while 3D DCNNs are computationally expensive and memory intensive. To address these issues, we first propose a novel dense-sparse training flow from a data perspective, in which, densely adjacent slices and sparsely adjacent slices are extracted as inputs for regularizing DCNNs, thereby improving the model performance. Moreover, we design a 2.5D light-weight nnU-Net from a network perspective, in which, depthwise separable convolutions are adopted to improve the efficiency. Extensive experiments on the LiTS dataset have demonstrated the superiority of the proposed method.